
AT&T at TREC-6Amit SinghalAT&T Labs{Researchsinghal@research.att.comAbstractTREC-6 is AT&T's �rst independent TREC participation. We are participating in the main tasks(adhoc, routing), the �ltering track, the VLC track, and the SDR track1 This year, in the main tasks,we experimented with multi-pass query expansion using Rocchio's formulation. We concentrated a rea-sonable amount of our e�ort on our VLC track system, which is based on locally distributed, disjoint,and smaller sub-collections of the large collection. Our �ltering track runs are based on our routing runs,followed by similarity thresholding to make a binary decision of the relevance prediction for a document.1 IntroductionTREC-6 is the �rst TREC in which AT&T is participating as an independent group. Much of our work islargely inspired by Smart's philosophy of fully automatic processing of large text collections. Our partici-pation is based on an internally modi�ed version of Cornell's SMART system. We submitted runs for theadhoc task, the routing task, the �ltering track, the VLC track, and the SDR track (see footnote 1).In the main tasks, the highlight of our preparation for TREC this year was our repeated failure to improveupon Cornell's TREC-5 results (we were a part of Cornell's TREC participation last year). In the routingtask, we tried many new techniques, and variations of old techniques, but nothing provided a noticeableimprovement in performance over last year's results. We �nally settled for a two-pass query modi�cationalgorithm, with the second pass intended to �x the weakness of the �rst-pass query. This yields smallimprovements in our routing performance. In the adhoc task, we augment the \goodness" of a query-termby a new \importance factor" in addition to the usual query term weight, for selecting the top documentsto be used in pseudo-feedback.2 Routing RunsOur routing runs use routing queries learned in a query zone using Rocchio's formulation. [7] All termweighting in our system is based on pivoted-unique document length normalization. [6] The �rst o�cial run,att97rc (routing, conservative), uses the routing algorithm presented in Table 2.Unfortunately, our o�cial run att97rc has a bug that resulted in non-optimized word-pair weights.Fixing it improves the performance reasonably. Table 3 shows the results of our buggy o�cial run att97rc,as well as the results when the bug is �xed. Since the �xed run was not in the pool of runs used to computethe best/median statistics, we notice that the �xed run is actually better than the best o�cial result forthree of the topics, and is above median for 46 out of 47 topics. These numbers suggest that the aboverouting algorithm is quite e�ective.Table 4 shows the e�ectiveness of various components of the above routing algorithm. When no queryzoning is used, i.e., all non-relevant articles are used in Rocchio's formula, a di�erent set of Rocchio parame-ters (� = 8; � = 64;
 = 256) is known to be more e�ective [7], and we obtain an average precision of 0.3296.Once we switch to using query zones, we obtain a 8% improvement over not using query zones. This is instrong agreement with our earlier experiments on other TREC routing tasks. [7] Now we can either optimize1 This report does not describe our SDR track participation. Please see the adjoining report \AT&T at TREC-6: SDRTrack" for details of our SDR system. 1

l tf factor: 1 + log(tf)L tf factor: 1 + log(tf)1 + log(average tf in text)t idf factor: log(N + 1df)u length normalization factor: 10:8 + 0:2� number of unique words in textaverage number of unique words per documentwhere, tf is the term's frequency in text (query/document)N is the total number of documents in the training collectiondf is the number of documents that contain the term, andthe average number of words per document is 110.ltu weighting: l factor � t factor � u factorLnu weighting: L factor � u factorLtu weighting: L factor � t factor � u factorTable 1: Term Weighting Schemesthe query without adding word-pairs, or after adding word-pairs. If we optimize the query without addingword-pairs, we get an overall improvement of about 16% over our baseline. But if we do add word-pairs(as explained in step 3 of the algorithm in Table 2), prior to optimization, just by adding 100 pairs, weget an improvement of about 13% over the baseline. Optimization of pair-added queries yields even richerimprovements than optimizing the non-pair-added queries, yielding an overall improvement of about 25%over our baseline.The above routing algorithm is quite similar to the routing algorithm we used in TREC-5 [2], except forminor variations. We tried various new techniques to improve upon the above routing algorithm, but noneof the techniques we tried yielded better results that the above algorithm.Our �rst approach revolved around clustering the known relevant articles for a query. The main thoughtbehind this approach was that relevance can have \multiple aspects". For example, for a query on tradebarriers in Japan, one aspect of the relevant documents is trade barriers in the automobile industry (withkeywords like: chrysler, ford, mitsubishi, : : :), yet another aspect is trade barriers in the electronics industry(with keywords like: toshiba, sony, : : :). If one can isolate such patterns in the relevant documents, it shouldbe possible to learn one query per aspect and this query should be better than one global query for routingdocuments related to that aspect. Unfortunately we were unable to improve our routing performance usingsuch an approach, mainly, we believe, due to the following reasons: a) not too many queries have clearlyde�ned multiple aspects of relevance, b) once we cluster documents and select an aspect, the amount oftraining data (relevant and non-relevant documents) is much less for the aspect, resulting is a poorer feedbackquery; and c) a good single query already incorporates the multiple aspects of relevance in it, for example,the feedback query for the above example will have keywords from all aspects (chrysler, ford, mitsubishi,toshiba, sony, : : :), thereby implicitly giving us the bene�ts we had hoped to obtain from clustering.The second approach we tried was based on using a multi-pass query re�nement technique. The basic ideabehind this scheme is to compensate for the de�ciency of a feedback-query, by enhancing it with another passof feedback. For example, once we learn a �rst pass query using Rocchio's formulation (no optimization), wecan use this feedback query to rank the training collection. This feedback query will rank some non-relevantdocuments at top ranks. These are the non-relevant documents that the �rst pass feedback-query is havingdi�culty \defeating". If we learn another query speci�cally aimed at defeating these non-relevant documents2

1. Using ltu weighted queries (see Table 1), and Lnu weighted training documents, form a training\query-zone" by retrieving the top 5,000 documents for the query (using the inner-product similar-ity).2. Using the non-relevant documents in the query-zone, and all the relevant documents in thetraining corpus, form a feedback query using Rocchio's formulation using the following con-straints/parameters:� Document terms are Ltu weighted. Original queries are ltu weighted.� Only the original query terms, and the \non-random" words and phrases, i.e., the words thatappear in at least 10% of the relevant articles, and phrases that occur in at least 5% of therelevant articles are considered for use in the feedback query.� Top 100 words and 20 phrases, as weighted by the Rocchio formula:8� original query vector + 64� average relevant vector � 64� average nonrelevant vectorare retained in the feedback query with weights predicted by the above formula. The averagerelevant vector is the average vector of all the relevant documents: 1jRj �PDi2Rel ~Di, wherejRj is the number of known relevant documents. The average non-relevant vector is de�nedcorrespondingly.3. The query formed in the above step is a recall-oriented query. To enhance the precision of thequery, we add query-word|query-word cooccurrence pairs to the above query. If two words occurin the same document , they form a potential cooccurrence pair.� Using the 100 query words from the previous step, we consider the 4,950 word-pairs.� All the \random" word-pairs, i.e., the word-pairs that occur in fewer than 7% of the relevantdocuments, are removed.� Since we want to add a precision tool to the query, we re-sample the training non-relevantdocuments, and use the top 2 � jRj non-relevant documents from step 1. Here jRj is thenumber of training relevant documents.� Using all the relevant documents, and this restricted set of non-relevant documents (a tighterquery-zone, so to speak), we add to the query (from step 2) the 100 word-pairs with highestweights as weighted by the following Rocchio formula:64� average relevant vector � 64� average nonrelevant vectorSince word-pair weights in documents are needed in the above formula, to compute the Ltu weightfor a pair, the lower of the constituent words' tf is considered as the pair's tf. Pair idf is computedon the
y by computing the true pair df by intersecting the individual words' inverted lists.4. Term weights in this query of 100 words, 20 phrases and 100 word-pairs are further optimized usingthree-pass dynamic feedback optimization (DFO) with pass ratios 1.00, 0.50, and 0.25. [1]5. The optimized feedback query is used to rank the new (test) documents. The test documents areLnu weighted (see Table 1). Table 2: Routing AlgorithmRun Average Precision > Best Best >= Median < MedianO�cial (buggy) 0.3963 { 4 43 4Fixed 0.4132 3 0 46 1Table 3: Results for att97rc3

No QZ QZ QZ+DFO QZ+Pairs QZ+Pairs+DFO�:�:
 : 8:64:256 �:�:
 : 8:64:64 (No Pairs) (No DFO)Avg. Prec 0.3296 0.3560 0.3819 0.3716 0.4132Improvement { + 8.0% +15.9% +12.7% +25.4%(over No QZ) Table 4: E�ect of various components of att97rcRun Average Precision > Best Best >= Median < MedianO�cial (buggy) 0.4207 { 4 45 2Fixed 0.4307 3 0 45 2Table 5: Results for att97re(using Rocchio's formulation with all the relevant documents and these top few non-relevant documents),then by combining the �rst pass and the second pass query, we should be able to get an overall improvedquery. We found that such two-pass approach improves routing e�ectiveness in experiments on the TREC-3,4, and 5 routing tasks, over using a single pass non-optimized feedback. But the resulting two pass queryis still somewhat poorer than the optimized one pass query. Optimizing the two pass query didn't buy usmuch. Overall it is a wash to use a multi-pass query or a single pass optimized query.A minor variation of the above multi-pass approach did yield very small improvements over an optimizedone pass query for the TREC-3, 4, and 5 tasks, and was submitted as our other o�cial run att97re (routing,experimental). The idea in this run is to �nd the relevant documents that the �rst pass feedback-query isnot ranking well in the training collection, i.e., the bottom ranked training relevant documents (as ranked bythe feedback-query), and the non-relevant documents that the �rst pass query is not defeating well, i.e., thetop ranked training non-relevant documents. This idea bears resemblance to the class of algorithms knownas boosting in the machine learning community. [3] We select the bottom jRj=2 relevant documents, and thetop 2� jRj non-relevant documents (where jRj is the number of training relevant documents for a query).We take the query formed using steps 1-3 of the algorithm in Table 2, rank the training collection usingthis query, and select the bottom jRj=2 relevant documents, and the top 2 � jRj non-relevant documents.We independently form another query of 100 words, 20 phrases, and 100 word-pairs using these trainingdocuments (using steps 2-3 of the algorithm in Table 2). The �nal query is constructed using the followingformula: pass-1 query + 0:25�pass-2 query. This �nal query is then optimized using a 3-pass DFO (as instep 4 in algorithm in Table 2). Unfortunately our o�cial submission att97re also has a bug. The phraseand cooccurrence contributions were reduced (0.5 used in place of 1.0) due to a bug in the shell script usedin att97re. Once the bug is �xed, the average precision for att97re improves some. This run is about4% better than our conservative run att97rc. Table 5 shows the results of att97re. We believe that suchmulti-pass approaches for routing are promising, and deserve a more careful study.AsideIn doing some post hoc analysis of where our current routing algorithms are failing, and why aren't weobserving any marked improvements in the best routing e�ectiveness over the last few TRECs, we readseveral documents retrieved at top ranks by our routing queries. While reading through these documents,we did �nd many instances where a non-relevant article was ranked high because of the limitations ofthe statistical nature of our systems. But often enough, we found ourselves wondering why a documentwas judged non-relevant while another, very similar document was judged relevant. For the adhoc task,on reading the documents, it was much more obvious to us why documents were judged relevant or non-relevant. Voorhees and Harman report a three-way assessor agreement rate of approximately 72% for theadhoc task, [8] which is a very respectable agreement rate. We wonder if this �gure would be lower for therouting task. It would be interesting to do such an assessor agreement study for the routing task, especiallysince the documents in the judgment pool are being retrieved by queries that have been learned using a largeamount of training data, and are therefore much more precise (or e�ective) than the adhoc queries.4

Word df in 1,000 df df in 1 ;000df Weight Factor Final Weighthazard(ous) 386 7125 0.0542 5.34903 1.0000 5.34903termin(als) 444 11903 0.0373 4.71901 0.6838 3.22673comput(er) 454 22505 0.0202 3.93704 0.5528 2.17634health 561 43015 0.0130 3.14174 0.4523 1.42094daily 262 21034 0.0125 4.02003 0.3675 1.47754individual(s) 474 44335 0.0107 3.10463 0.2929 0.90933basi(s) 427 42023 0.0102 3.17038 0.2254 0.71461work 617 148250 0.0042 1.62267 0.1633 0.26505Table 6: Term Ordering for Topic 3503 Adhoc RunsOver the last few years, it has been shown that pseudo-feedback, i.e., query modi�cation without anyrelevance feedback from a user, assuming that the top few documents retrieved by the user query arerelevant, yields noticeable improvements in retrieval e�ectiveness in the adhoc task. [4, 8] Typically we havebeen using the top twenty documents retrieved by the original query for pseudo-feedback. Motivated byHearst's observations in [5], recently we have tried improving the quality of our relevance assumption byreranking the top �fty documents retrieved by the original query according to some \precision criteria" andusing the top twenty documents from this reranked list in pseudo-feedback. [2] One particular criteria thatwe have used is the presence of several query terms in a small window of text in a document (see Table 7).This year, we used a new method to rerank the top �fty documents to select the set of twenty documentsused in pseudo-feedback. This technique is based on a new query term weight modi�cation factor that we useto assess the importance of a query term in addition to the regular query term weight ltu (see Table 1). Duringexperimentation, we observed that the goodness of a query term is related to the number of documents, inthe top (say, 1,000) documents retrieved by the query, that contain the term. But since common words canappear in many documents, we need to normalize the above measure by the global df of the term. We usedthe following function to rank the original query terms:number of documents in the top 1 ; 000 documents (retrieved by the query) that contain the termnumber of documents in the collection that contain the term (df)For example, for query 350, \Is it hazardous to the health of individuals to work with computer terminalson a daily basis?", the term ordering generated by this scheme is shown in Table 6. The query words arelisted in decreasing order of their perceived importance in Table 6. This method does rank terms that weintuitively know are most important (e.g., hazard, terminal) ahead of other terms that we think are lessimportant (e.g., basis, work). Even though a purely idf based ranking will place a relatively less useful word,like basis, ahead of a more useful word, like health.After the terms in a query are ranked by the above formula, their weights are modi�ed by multiplyingwith the following importance factor: 1:0�rrank � 110This factor lowers the weights of the terms ranked poorly in the above ranking, thereby emphasizing the topfew terms noticeably. Table 6 also shows the original query term weight (column 5), the value of the abovefactor for a term (column 6), and the �nal query term weight for reranking the top �fty documents (column7). We can see how less important terms, like basis and work , get a very low �nal weight. By using thisweight modi�cation factor, we ensure that a combination of the low ranked (hopefully less useful) terms willnot defeat a presence of a high ranked term, which is often essential for relevance. Table 7 shows our fulladhoc algorithm.Table 8 show the performance of the various components of our adhoc algorithmover several TREC tasks.We use only the description �eld of the queries for the results reported in Table 8. The second columnhas the results for a straight vector run. The third column shows the results when the top 20 documents5

1. Retrieve 1,000 documents using ltu weighted queries and Lnu weighted documents.2. Rerank the query terms by df in 1 ;000df and multiply their weight by 1:0�qrank�110 .3. Using the re-weighted query, rerank the top 50 documents. Documents are broken into 50words overlapping windows starting at every 25th word, and a document's score is the bestscore of any window in that document.4. Top 20 documents in this reranked list are assumed relevant. Since majority of the bottomranked documents are usually non-relevant, documents ranked 501 to 1,000 are assumed tobe non-relevant. Pseudo-feedback is performed using these assumptions, and the query isexpanded by 25 words and 5 phrases. (Rocchio parameter values of � = 8; � = 8;
 = 8 areused.)5. The expanded query is used to rank the collection to get the �nal ranking for documents.Table 7: Adhoc Algorithm
Task No Feedback Top 20 501-1,000 Rerank based(Lnu.ltu) Relevant Non-Relevant on localityTREC-3 0.2385 0.3214 0.3340 0.3462{ +34.8% +40.1% +45.2%TREC-4 0.2303 0.3000 0.3082 0.3167{ +30.2% +33.8% +37.5%TREC-5 0.1505 0.1855 0.1909 0.2010{ +23.3% +26.8% +33.5%TREC-6 0.1621 0.1723 0.1849 0.1847{ + 6.3% +14.1% +14.0%Table 8: E�ect of various pseudo-feedback methods on adhoc performance, description-only queries. Ouro�cial run att97ac is shown in bold. 6

Task No Feedback Top 20 501-1,000 Rerank based(Lnu.ltu) Relevant Non-Relevant on localityTREC-6 0.2005 0.2017 0.2079 0.2289Title-Only Queries { + 0.6% + 3.7% +14.2%P@20 0.3070 0.3200 0.3210 0.3530{ + 4.2% +4.6% + 15.0%Table 9: E�ect of various pseudo-feedback methods on title-only TREC-6 adhoc queries. Our o�cial runatt97as is shown in bold.Query Query No Feedback Top 20 501-1,000 Rerank basedLength (Lnu.ltu) Relevant Non-Relevant on localityTitle Only (T) 3.02 0.2005 0.2017 (+ 0.6%) 0.2079 (+ 3.7%) 0.2289 (+14.2%)Title+Desc (T+D) 11.78 0.2064 0.1931 ({ 6.5%) 0.2071 (+ 0.3%) 0.2237 (+ 8.4%)Improvement over T + 3.0% { 4.3% { 0.4% { 2.3%Full (T+D+N) 33.60 0.2179 0.2210 (+ 1.4%) 0.2282 (+ 4.7%) 0.2384 (+ 9.4%)Improvement over T + 8.7% + 9.6% + 9.8% + 4.1%Table 10: Performance of di�erent lengths of TREC-6 adhoc topics.from the straight vector run are assumed to be relevant and pseudo-feedback is performed. The fourthcolumn also assumes documents ranked 501-1,000 as non-relevant (in addition to the third column). The�fth column is the reranking run (in addition to assuming 501-1,000 non-relevant). It is evident that pseudo-feedback improves performance across tasks. However, we should note that the improvements obtained forthis year's task are much lower than what we have been getting in the past (only 6% over a poor baselinevs. 23-35% over reasonable baselines). We also observe that assuming the bottom ranked documents to benon-relevant gives us some additional improvement in performance; actually an important 7-8% (over notassuming non-relevance) for this year's task. Also our reranking of the top documents to select a new set oftwenty documents for feedback also gives us additional improvement across tasks, except for this year's task.We believe that locality based reranking of top documents to select a better set of assumed relevantdocuments is a promising way to improve the quality of pseudo-expansion, but it needs more careful investi-gation. Since we developed this reranking scheme in the �nal days before the submission, we did not studyvarious other alternatives that can be used for reranking in place of the above method. Also, the formulaused above to marginalize the less important words was developed at the last moment and we believe thatthere are better ways of emphasizing core query terms than the adhoc formula we have used above.Title-Only QueriesWe also submitted a run for the very short, title-only queries. Our main motivation for this run was totest the robustness of our algorithms for these very short queries (which are very common these days in aweb-search type environment). Table 9 shows the e�ect of various components of our adhoc algorithm onretrieval using these very short queries. For this task, pseudo-feedback doesn't yield much better resultsover basic vector matching, but pseudo feedback with reranking does yield about 14% improvement. Thisindicates that document reranking (for pseudo-feedback) is quite useful even for these tiny queries. For acasual searcher precision at twenty is usually a more meaningful number than average precision. Table 9also shows the P@20 �gures. We again see that reranking based pseudo-feedback gets (on an average) aboutone extra relevant document in the top 20 documents as compared to basic vector matching.Query LengthWe also study the e�ect of using longer user queries in adhoc searching. Table 10 shows the results ofusing the title-only queries, title+description queries, and title+description+narrative queries for this year'sadhoc task. This scenario is akin to when a user progressively
eshes-out the query by further describing7

Run Average Precision Best >= Median < Medianatt97ac (desc only) 0.1847 1 36 14att97ae (desc only) 0.1801 3 33 17att97as (title only) 0.2289 7 31 19Table 11: Results for adhoc runshis/her information need to a system. The query length in column 2 is the average number of unique wordsand phrases in the query. In adding the description section to the title-only query, a user adds almost anothernine new words and phrases to a query (the average query length increases from 3 to almost 12). In furtheradding the narrative section, the user adds an average of another twenty-two new words and phrases to thequery (average query becomes 33.6).A casual user will seldom provide a system with such (33 word) long queries. However, the good news isthat with 3 carefully chosen words, the retrieval e�ectiveness of a query using our reranking-based algorithmis almost as good as the retrieval e�ectiveness of a very long query. Here are some key observations fromTables 8 and 10:� For this year's adhoc task, just assuming that the top few documents retrieved by the initial query arerelevant and doing relevance feedback is not very useful. This technique has been quite successful in thepast. This year, depending on what parts of a topic are used in the initial run, this techniques loses orgains up to 6% in average precision. In the past, this feedback method has yielded large improvements(see Table 8, TREC-3{5 rows).� Assuming that documents ranked poorly by the initial query are non-relevant does help some con-sistently. An exception is this year's description-only query (see Table 8) for which this assumptionhelps noticeably. This might be due to the poor baseline, or due to some other reason. We haven'tinvestigated this yet. But, in general, there is no harm in using this assumption.� Reranking the top few documents based on query-word locality to improve our assumption of relevanceis quite useful in general. Except for the description-only queries for this year's task, this techniqueconsistently yields improvements over no reranking. Once again, using this technique is seldom hurtful.� Even though adding the description section to the queries somewhat improves the the initial queries,post pseudo-feedback, it is not very useful. (The improvements obtained over using the title-onlyqueries are listed in the rows labeled Improvement over T .)� Even though full queries are about 9% better than the title-only queries initially, (Table 10, column 3),post reranking pseudo-feedback, the results are just 4% better than the title-only results (column 6).This result is encouraging for locality-based reranking, since the performance gap between the veryshort and the very long queries reduces post reranking and pseudo-feedback.Experimental RunOur experimental run att97ae was based on the following reasoning: since pseudo-feedback is usuallyuseful, if we do another pass of pseudo-feedback assuming that the �rst pass query is retrieving more relevantdocuments in the top ranks, and is pushing down more non-relevant documents to ranks 501-1000, we shouldbe able to improve the results further. This half-hearted attempt didn't prove bene�cial. Our experimentalrun yields poorer results than our �rst run|att97ac.Table 11 gives comparison to medians for our submissions. Based on the number of queries for which wehave below median results, we believe that there is a lot of room for improvement in our adhoc algorithm.8

Run Measure Best >= Median < Median Exact Too Many Too Fewatt97fcuf1 Utility-1 7 37 10 0 20 27att97feuf1 Utility-1 7 40 7 4 18 25att97fcuf2 Utility-2 6 41 6 0 16 31att97feuf2 Utility-2 10 41 6 2 10 35att97fcasp ASP 7 43 4 0 9 38att97feasp ASP 13 44 3 1 7 39Table 12: Results for �ltering runsD12345 DAT-1 DAT-2 DAT-3 DAT-4Approximate Size (GB) 5.21 3.72 4.16 3.70 3.40Indexing Time (Elapsed Minutes) 131 103 105 105 101Index Size (GB) 1.81 1.21 0.88 1.10 1.20Table 13: VLC Sub-collections4 Filtering RunsOur �ltering track participation relies heavily upon our routing algorithm. Using the algorithm shown inTable 2 on the �ltering track data, we learn a �ltering query. Using this �ltering query, we retrospectivelyrank the training collection and �nd a similarity threshold for the �ltering query that would maximize ourevaluation measure (utility or average set precision) on the training documents. Any test document thathas a similarity greater than the above �ltering threshold (to the �ltering query) is assumed relevant and ispassed to the user (if there were any). One should note that we optimize our �ltering query to maximizeaverage precision using DFO (step 4 in Table 2), and use the same query across evaluation measures. Theonly di�erence between di�erent evaluation measures is in learning of the �ltering threshold.Table 12 shows the performance of our runs using the pooled evaluation. Runs att97fcuf1, att97fcuf2, andatt97fcasp use the (conservative) one-pass algorithm from Table 2; whereas runs att97feuf1, att97feuf2, andatt97feasp use the two pass algorithm (used in our routing run att97re). In general our �ltering algorithmworks well. The two-pass algorithm is somewhat better than our one-pass algorithm but we suspect thatthe di�erence is not statistically signi�cant (we haven't done the tests yet!).Also shown in Table 12 is an evaluation of our thresholding algorithm. The last three columns show howour threshold is doing as compared to an \ideal" threshold. The Exact column shows the number of queriesfor which our threshold did as well as the ideal threshold. The Too Many column shows the number ofqueries for which we retrieved more documents than we should have (so we had a lower threshold than theideal threshold), and the last column shows the number of queries for which we had a higher threshold valuethan the optimal value. It is informative to know that the same thresholding algorithm does reasonablyfor utility-1 (3, -2, 0, 0), whereas for utility-2 (3, -1, -1, 0) and for average set precision, we seem to beretrieving too few documents in general. We plan to investigate our thresholding strategy in the near future,and possibly develop a more informed thresholding strategy.5 VLCTo participate in the very large collection track, we have developed a new distributed version of the SMARTretrieval system. The main design principle behind this version is: given a very large collection, it couldbe divided into several small, independent collections, which, when searched individually yield compatibledocument scores for a given query.In the indexing phase, parts of the large collection are assigned to various CPUs (or machines on a LAN)as \independent" collections. The indexing is run in parallel on various CPUs. On our machine, the SMARTsystem indexed the VLC text at about 2.4G/Hour. This could have been faster, had we limited ourselves9

Average Query Length 27.48 wordsBaseline Task P@20 0.348Full Task P@20 0.530Table 14: VLC Resultsto running at most three indexing runs at a time instead of the �ve that we ran (since both the source text,and the indexed collection are stored on partitions of three striped disks and running more than three I/Obound processes usually slows down each of them due to disk bottleneck). We divided the VLC corpus intothe following sub-collections: D12345, DAT-1, DAT-2, DAT-3, and DAT-4. (In retrospect, removing oneof the disks from TREC D12345, and distributing it over DAT-1, DAT-3, and DAT-4 would have been abetter distribution.) Table 13 shows some statistics for these sub-collection. Since our documents are Lnuweighted, we do not need term idf values at the time of indexing the collections, therefore all collections areindexed without any dependence on one-another. The total indexing time is the same as the longest timetaken to index any sub-collection.Once all the sub-collections are indexed individually, they read the dictionary and the df statistics forall other collections (df can possibly be encoded in the dictionary itself). Each collection merges the dfinformation from all other collections to obtain a global df value (thus the idf value) for every term. Now,each collection has the true idf for every word. For the current implementation of the SMART system andfor this task, this means reading about 50-75 MB of information from four other sources. Since all disks arelocal on our multi-processor system, this reading and merging took less than a minute for every collection. Ofcourse, all this is possible since the stemming algorithm and the stop-word list is common across collections,the dictionaries across collections have same stems for a given word, and are therefore compatible.For searching, a query is sent to each collection, and each collection retrieves its top twenty documents(twenty because this was the number wanted for evaluation in the VLC track). The similarities assigned tothese documents are compatible since all collections have the global idf information for a term, as well as acommon stemming/stopping algorithm (we are using ltu weighted queries, and we are using all sections|title, description, narrative|in the query, and we don't use phrases). The �ve lists of twenty documentseach are merged, sorted by document score, and the top twenty documents are retrieved for evaluation.The whole retrieval take about two minutes for all �fty queries on our machine. The results are shown inTable 14. The full-task precision at twenty documents is very respectable, even better than the precision attwenty for the baseline task (a much smaller 2G database).6 ConclusionsOur routing algorithm using query zones, word-pairs, and dynamic feedback optimization seems to be doingwell. One big question that we should ask ourselves is why aren't we seeing much improvement in the routingperformance over the last few TRECs? Doing a assessor agreement study in the routing environment wouldbe interesting and might also tell us more about limits on our system performance.Di�erent components of our adhoc algorithm work well on di�erent adhoc tasks. Overall, all componentsput together do yield noticeable improvements over a straight vector-match retrieval. As the adhoc task getsharder, with many queries with very few relevant documents, performance of the various components of ouradhoc algorithm becomes unstable.We show that it is feasible to index/retrieve-from very large text collections e�ciently by sub-dividingthem into smaller collections and sharing the collection information. We are encouraged by the retrievale�ectiveness and the speed of our algorithms for very large collections.Our routing algorithm followed by similarity thresholding seems to be doing a reasonable job of bi-nary documents classi�cation (�ltering). Similarity thresholding should be studied more for the �lteringenvironment. 10

AcknowledgmentsWe are thankful to David Lewis and Mandar Mitra for the useful discussions that helped us in variousaspects of this work.References[1] Chris Buckley and Gerard Salton. Optimization of relevance feedback weights. In Edward Fox, Pe-ter Ingwersen, and Raya Fidel, editors, Proceedings of the Eighteenth Annual International ACM SIGIRConference on Research and Development in Information Retrieval, pages 351{357. Association for Com-puting Machinery, New York, July 1995.[2] Chris Buckley, Amit Singhal, and Mandar Mitra. Using query zoning and correlation within SMART:TREC-5. In D. K. Harman, editor, Proceedings of the Fifth Text REtrieval Conference (TREC-5), 1997(to appear).[3] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In Machine Learning:Proceedings of the Thirteenth International Conference, pages 148{156, 1996.[4] D. K. Harman. Overview of the fourth Text REtrieval Conference (TREC-4). In D. K. Harman, editor,Proceedings of the Fourth Text REtrieval Conference (TREC-4), pages 1{24. NIST Special Publication500-236, October 1996.[5] Marti A. Hearst. Improving full-text precision on short queries using simple constraints. In Proceedingsof the Fifth Annual Symposium on Document Analysis and Information Retrieval, pages 217{232, LasVegas, NV, April 1996.[6] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted document length normalization. In Hans-PeterFrei, Donna Harman, Peter Schauble, and Ross Wilkinson, editors, Proceedings of the Nineteenth AnnualInternational ACM SIGIR Conference on Research and Development in Information Retrieval, pages21{29. Association for Computing Machinery, New York, August 1996.[7] Amit Singhal, Mandar Mitra, and Chris Buckley. Learning routing queries in a query zone. In Nick Belkin,Desai Narasimhalu, and Peter Willett, editors, Proceedings of the Twentieth Annual International ACMSIGIR Conference on Research and Development in Information Retrieval, pages 25{32. Association forComputing Machinery, New York, July 1997.[8] E. M. Voorhees and D. K. Harman. Overview of the �fth Text REtrieval Conference (TREC-5). In D. K.Harman, editor, Proceedings of the Fifth Text REtrieval Conference (TREC-5), 1997 (to appear).
11

