
AT&T at TREC-6: SDR TrackAmit Singhal, John Choi, Donald Hindle, Fernando PereiraAT&T Labs { Researchfsinghal,choi,hindle,pereirag@research.att.comAbstractIn the spoken document retrieval track, we study how higher word-recall|recognizing many of thespoken words|a�ects the retrieval e�ectiveness for speech documents, given that high word-recall comesat a cost of low word-precision|recognizing many words that were not actually spoken. We hypothesizethat information retrieval algorithms would bene�t from a higher word-recall and are robust againstpoor word-precision. Start-up di�culties with recognition for this task kept us from doing an systematicstudy of the e�ect of varying levels of word-recall and word-precision on retrieval e�ectiveness fromspeech. We simulated a high word-recall and a poor word-precision system by merging the outputof several recognizers. Experiments suggest that having higher word-recall does improve the retrievale�ectiveness from speech.1 IntroductionFrom a retrieval system's perspective, a speech recognizer makes two types of recognition errors:� Omissions: a spoken word is not recognized, and� Delusions: the recognizer recognizes a word that was not spoken.All recognition errors can be attributed to the above two types of errors, or their combination. Omissionsreduce the word-recall, where word-recall is de�ned as the proportion of spoken words that are recognized;whereas delusions reduce the word-precision, where word-precision is de�ned as the proportion of recognizedwords that were spoken.When speech-retrieval is done using word-based IR techniques, we hypothesize that omissions are muchmore hurtful than delusions. We believe that our IR techniques are quite robust against \noise" in the inputtext, given that there is enough \signal" in the text. High word-recall contributes to high signal in the textand high word-precision leads to low noise in the text. Therefore we want to study the e�ect of varyinglevels of word-recall and word-precision on retrieval e�ectiveness for speech.Based on above hypothesis, we would like to enhance word-recall (by reducing omissions) at the cost ofpoorer word-precision. Two factors are responsible for omissions by a recognizer:� Poor recognition: Often poor acoustics or language model constraints do not allow the recognizer tohypothesize a word with a reasonable con�dence, even though the word is in the recognizer's vocabulary.� Out of vocabulary (OOV): The spoken word is not in the recognizer's vocabulary, thus could never berecognized.Using a word-based recognition system, we cannot attack the OOV problem, but we can certainly attack theother problem by generating many more words that are suggested by a recognizer even with a low con�dence,and using these words for retrieval. As a recognizer suggests more and more words for a speech segment,the word-recall should improve but the word-precision should become poorer.An attack on the OOV problem is to perform retrieval on sub-word acoustic units (phones, demi-syllables,syllables, or sequences of these units). [1, 5] For example, one might use all phone trigrams in the one-bestphone transcription of the speech as the indexing units for an IR system. A user query could also be1



translated into a bag of phone trigrams 1. Given that even the best phone recognizers make a large numberof mistakes, to improve phone trigram recall, we can once again use phone lattices to obtain the bag ofphone trigrams for each speech document. Once the recognizer outputs a phone lattice, we can simply useall possible three-phone sequences in the lattice as indexing units. A similar lattice-based approach can beused for any class of indexing units, for example syllable or demi-syllable sequences.2 Initial PlansSince we did not already have a recognizer trained on HUB-4 material, we were relatively unconstrainedwith respect to recognizer design, so we set out to build a system that would attack both the word-recalland the OOV problems. We thus decided to implement a syllabic lattice recognition system, using existingtraining, recognition, syllabi�cation and language-modeling programs. However, given that we started thework on our recognizer in late June, having a complete system running before the SDR deadline was quitean ambitious task.For syllabic language modeling, we create a word list, generate word pronunciations with a text-to-speechsystem, and we apply a simple rule-based maximal onset syllabi�er to the result to create a translation tablefrom words to syllables. Since the position of a syllable within a word is quite informative for languagemodeling, we use four position-marked versions of each syllable: word-initial, word-medial, word-�nal andmonosyllabic word. The resulting translation table from words to position-marked syllables is then usedto translate the language-model training text into syllable sequences from which the appropriate n-gramstatistics are computed.To retrieve from syllabic-recognition output, the query words would be syllabi�ed and the resulting sylla-ble n-grams used to look up documents also indexed by syllable n-grams from built from the correspondingrecognizer output. However, various di�culties described in the next section prevented us from having thefull results of syllabic recognition in time for the track deadline, and we ended up using a simpli�ed approachdescribed later.3 RecognizerFor recognition, we used phone-based models, a single-pronunciation dictionary, and a syllable bigram backo�language model.For phone models, we used 3-state, left-to-right, HMMs with triphonic context dependence, trained on39-dimensional acoustic feature vectors of mel-frequency cepstral coe�cients and their �rst and second timederivatives centered on 5 and 3 frame windows, respectively. These vectors were initially modeled by a singlefull covariance Gaussian pdf (probability distribution function) per state, which was then rotated using theeigenvectors of the covariance matrix to remove correlations between parameters. Decorrelation was followedby the estimation of a weighted mixture of Gaussian pdfs with diagonal covariance. [3]Context-dependency was modeled using categorical decision trees based on sub-phonemic classes, whiche�ectively results in context-dependent tying of states. The decision trees were trained only on the trainingspeech. A separate context-dependency model was de�ned for each training partition.We built three separate sets of models: one set from speech labeled as high-�delity with no backgroundnoise, one from medium and low �delity speech with no background noise, and one from speech labeled ashaving background noise. In training each of the three sets of models, we bootstrapped from a single modeltrained on the channel-1 data from the NAB corpus.For language modeling, we used a standard backo� bigram language model [2] over a vocabulary ofabout 20,000 position-marked syllables. This vocabulary size was chosen as a compromise between expectedrecognition speed and OOV rate. On the development test partition, a 20,000 word vocabulary yields an OOVrate 1.7%, while that for syllables is 0.4%. Position-marked syllables are represented by the their constituentphones together with a word boundary symbol, which is used in reconstructing words from the recognized1For written queries, a text-to-speech system can be used to obtain the phone string corresponding to the query.2



IBM AT&T+IBMWord-Recall 69.3% 82.1%Word-Precision 65.6% 18.9%Table 1: Word-recall and word-precision for IBM's transcription and the merged transcription.syllables. So, for example, the syllable that is typically spelled \bob" appears in the syllable wordlist as fourdistinct entries { #_B_aa_B_#, #_B_aa_B, B_aa_B, B_aa_B_# { corresponding to its appearance in the fourwords \Bob", \bobcat", \discombobulate", and \shishkabob", respectively.The language model was trained on the SDR training corpus and the data from transcribed news broad-casts, designated for use in the baseline language model (LM) for the 1996 CSR Hub-4 evaluation. Thesyllable inventory was de�ned using all pronunciation alternates generated by our text-to-speech system. Allsyllables in the SDR training corpus were included in the syllable inventory, and all syllables with frequencygreater than 3 in the Hub-4 LM corpus were included. To train the model, each word of the training textwas mapped into its component syllables (including the word boundary symbols); for words with multiplepronunciations, a single alternate was randomly chosen for each occurrence.4 Submitted RunsSince this was our �rst experience with this particular material (AT&T had not participated in the HUB4evaluations) and with a such a large material to be recognized, we encountered several di�culties thatseriously curtailed our original experimental design.First, we did not have at the time a reliable enough means of segmenting the test material into reasonably-sized segments of uniform type that could then be given to the appropriate one of our three recognizers(high quality, mid-low quality, and noisy). Therefore, we had to adopt the expedient of segmenting the testmaterial into evenly-sized overlapping segments, and running all three recognizers on each segment. Second,the lattice recognizers that we had at the time were too slow to be able to recognize the whole test materialin the available time and computing resources. Finally, the time and resources available to us were erodedfurther by a slew of unexpected systems problems.Therefore, to submit a run we had to scale back our plans radically. Instead of lattice recognizers, we ranone-best recognizers (2-3 times real time) for the three models on all the test segments. Furthermore, eventhough we had all the machinery in place for extracting indexing units | syllable n-grams | from lattices,this machinery was not of any use for one-best transcriptions.Both the \ad hoc" segmentation and the limited predictive power of the bi-syllable language modelcertainly contributed to the resulting poor recognition accuracy. While the segmentation into overlappingsegments prevented us for computing word-error rates precisely, we estimated the word-error rate as high as60%.2Given all the problems we had with the recognizer, we had not time left to test our syllabic retrievalsystem. So we had to give up on attacking the OOV problem and revert back to using English words forretrieval. But since our recognition was syllabic, we had to translate all the \syllabic words" (mono-syllabicwords and any syllable sequence that starts with a word-starting syllable, has any number of word-medialsyllables, and ends in a word-ending syllable) into all possible English words using a pronunciation dictionary.This resulted in a mono-syllabic word #_s_eh_n_t_# generating the English words cent, scent, and sent.We applied this transformation to the recognizer output from each of our three acoustic models, resultingin three homophone-rich wordlists for every story. We then merged all three lists to get the �nal text to beindexed for a story, forming a coarse simile of a lattice.The �rst run att97sS1 was done using this merged list of words as a document and the user queries. Tofurther simulate lattices, we created another set of words for every document by further merging the abovemerged list of words with the words that appeared in IBM's transcription of the speech. Our second retrievalrun att97sS2 was done using this longer list of words for a document, with higher word-recall and poorer2In contrast, with a recently developed segmenter and a 20,000-word bigram model, the word-error rate went down to 40%even without changing the acoustic models. 3



word-precision. Table 1 shows the recall and the precision �gures for the baseline (IBM's) transcription,and the merged (AT&T+IBM) transcription used in att97sS2. These �gures were computed using non-stop words (because only they matter in retrieval), and by ignoring word frequency (since we use binary tfweighting). The word-recall and the word-precision was computed for every story and was further averagedacross stories. We observe that the merged list does exhibit a higher word-recall and has a much poorerword-precision than IBM's transcription. Our main motivation for doing this merging was that if the mergedretrieval run works better than both att97sS1, and att97sB1 (which is a retrieval run done solely on IBM'sbaseline word transcriptions), then our hypothesis that improving word-recall should help speech retrievale�ectiveness will be supported.We use an internally modi�ed version of Cornell's SMART system for retrieval. We used standardinner-product similarity to rank the bnu weighted documents using ltu weighted queries within the SMARTsystem. [4] Where the weight of a word in a document (bnu) is:10:8 + 0:2� number of unique words in documentaverage number of unique words per documentand the weight of a query word is (ltu): 1 + log(tf ) � log(N+1df )0:8 + 0:2� number of unique words in queryaverage number of unique words per document5 ResultsOut of the three evaluation measures being used for known-item searching | mean rank, mean reciprocalrank, and counts of how many known items were found within top 5, 10, 20 and 100 documents | the �rsttwo (mean rank and mean reciprocal rank) have problems in our view. Mean rank is heavily in
uenced byeven a single miss (very poorly ranked document, an outlier). For example, if the known item for a queryis ranked 200, the mean rank for the entire collection of 49 queries drops by almost 4, irrespective of howwell the system is retrieving for the other 48 queries. However, if outliers are removed, i.e., all queries forwhich a system has extremely poor results (under some de�nition of extremely poor), then average rankmight yield meaningful results. Mean reciprocal rank, on the other hand, di�erentiates too much between aknown-item being ranked at rank 1 vs. if the known-item is ranked at rank 2. From a user's perspective, webelieve that ranking the known-item at rank 1 is not 100% better than ranking it at rank 2, a ratio assignedby mean reciprocal rank. We believe that counts of how many known items were found within top 5, 10, 20and 100 documents is the most meaningful measure out of the above three evaluation measures. If one hasto compare only two runs, another meaningful comparison would be a query-by-query comparison of the twosystems on a scatter plot. This would enable us to view which system is performing better on most of thequeries and by how much.Figure 1 shows a histogram of how document are ranked when di�erent texts | the human transcription(Human), IBM's transcription (IBM), our merged list of words (AT&T), and our list merged with IBM'swords (AT&T+IBM) | are used in retrieval for the 49 user queries. Our �rst observation from Figure 1is that retrieval done over the output of a speech recognizer using conventional IR techniques is quiterespectable. This agrees with the observation of other researchers who have worked with other speechcorpora. As expected, our internal recognition does not perform as well as the other transcriptions. We areactually surprised that it works as well as it does. Given the recognition di�culties described above, it issomewhat surprising that our system still retrieves thirty three answer documents within top �ve using ourmerged list of words, suggesting that the task at hand was rather easy.More interestingly, we observe that once we merge the baseline transcription provided by IBM and our listof words, even though we retrieve the answer document in the top �ve documents for fewer queries (which webelieve is a re
ection upon the poor quality of our recognition), if we look in the top ten documents, retrievalfrom the merged transcription (AT&T+IBM) outperforms retrieval from IBM's transcription alone. This istrue even when we look in the top twenty documents. Actually, when looked in the top twenty documents, themerged transcription works as well as the human transcription. Forty six out of forty nine queries have their4
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TFigure 1: Comparison of retrieval from various transcriptions.answers listed in the top twenty for retrieval from both the human and the merged transcription. Of course,where the answer is within the top twenty is also important. We believe that if we had a better transcriptioninternally, these results could have been better. This results are encouraging for further experimentationusing word and sub-word lattices.If we remove the outlier queries, i.e., query 3 (for which the answer article is ranked at ranks 236, 389,and 178 for the human, IBM, and AT&T+IBM transcriptions, respectively), query 23 (known item rankis 222 for AT&T+IBM), and query 42 (IBM's transcription does not retrieve the answer at all), then theaverage rank of the known item for the human, IBM, and AT&T+IBM transcription are 2.65, 4.15, and 3.04,respectively. This once again indicates that retrieval from AT&T+IBM transcription is somewhat betterthan retrieval from IBM's transcription alone. This lends further support to possibility of improved retrievalusing lattices.Another evidence that retrieval from AT&T+IBM transcription is better than the retrieval from theIBM's transcription alone is shown in Figure 2. Figure 2 shows what the rank of an answer document isusing the AT&T+IBM transcription vs. the rank of the corresponding document using IBM's transcriptionalone. The x-axis is the rank of the answer document as retrieved from IBM's transcription (log-scale), andthe y-axis is the rank of the answer document as retrieved from AT&T+IBM transcription (log-scale). Apoint below the diagonal line indicates that the rank of the answer document was lower (better retrieval) forthe AT&T+IBM transcription. This scatter plot shows that, in general, the merged transcription has betterresults. 24 of the 49 queries have their known-item retrieved at identical ranks for the two system. For 16queries, retrieval from AT&T+IBM transcription is better, and for 9 queries retrieval from AT&T+IBMtranscription is worse than retrieval from IBM's transcription alone.6 DirectionsWe have recently �nished implementing a fast lattice recognizer, and are currently in the process of trainingnew acoustic models. We have also developed a speech segmenter internally that assigns portions of thetest speech to one of several possible acoustic categories in our system. We plan to investigate lattice basedrecognition in a much more organized manner in the near future.Even though known-item retrieval is a �ne task for initial evaluation of speech retrieval system, thesmall size of speech corpora (as compared to more traditional information retrieval corpora) makes this taskarti�cially easy. There is very little noise in the corpora. Any user query hits just a few documents, if at5
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Figure 2: Comparison of retrieval from IBM's transcription and AT&T+IBM transcription.all it hits any. Therefore, larger speech databases are always desirable in a speech retrieval task. Movingto a more traditional, ranking evaluation using average precision might also exemplify some strengths andshortcomings of various approaches of speech retrieval.AcknowledgmentsWe are very grateful to Andrej Ljolje, Mehryar Mohri, and Michael Riley for all their help in building therecognizer for this data.References[1] G.J.F. Jones, J.T. Foote, K. Sparck Jones, and S.J. Young. Retrieving spoken documents by combin-ing multiple index sources. In Hans-Peter Frei, Donna Harman, Peter Schauble, and Ross Wilkinson,editors, Proceedings of the Nineteenth Annual International ACM SIGIR Conference on Research andDevelopment in Information Retrieval, pages 30{38. Association for Computing Machinery, New York,August 1996.[2] S.M. Katz. Estimation of probabilities from sparse data from the language model component of a speechrecognizer. IEEE Transactions of Acoustics, Speech and Signal Processing, pages 400{401, 1987.[3] Andrej Ljolje. The importance of cepstral parameter correlations in speech recognition. Computer Speechand Language, 8, 1994.[4] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted document length normalization. In Hans-PeterFrei, Donna Harman, Peter Schauble, and Ross Wilkinson, editors, Proceedings of the Nineteenth AnnualInternational ACM SIGIR Conference on Research and Development in Information Retrieval, pages21{29. Association for Computing Machinery, New York, August 1996.[5] M. Wechsler and P. Schauble. Indexing methods for a speech retrieval system. In C.J. van Rijsbergen,editor, Proceedings of the MIRO Workshop, 1995.6


