
Automatic Query Expansion Using SMART : TREC 3

Chris Buckley

�

, Gerard Salton, James Allan, Amit Singhal

Abstract

The Smart information retrieval project emphasizes completely automatic approaches to the understand-

ing and retrieval of large quantities of text. We continue our work in TREC 3, performing runs in the routing,

ad-hoc, and foreign language environments. Our major focus is massive query expansion: adding from 300 to

530 terms to each query. These terms come from known relevant documents in the case of routing, and from

just the top retrieved documents in the case of ad-hoc and Spanish. This approach improves e�ectiveness

from 7% to 25% in the various experiments.

Other ad-hoc work extends our investigations into combining global similarities, giving an overall indica-

tion of how a document matches a query, with local similarities identifying a smaller part of the document

which matches the query. Using an overlapping text window de�nition of \local", we achieve a 16% improve-

ment.

Introduction

For over 30 years, the Smart project at Cornell University has been interested in the analysis, search, and

retrieval of heterogeneous text databases, where the vocabulary is allowed to vary widely, and the subject

matter is unrestricted. Such databases may include newspaper articles, newswire dispatches, textbooks,

dictionaries, encyclopedias, manuals, magazine articles, and so on. The usual text analysis and text indexing

approaches that are based on the use of thesauruses and other vocabulary control devices are di�cult to

apply in unrestricted text environments, because the word meanings are not stable in such circumstances and

the interpretation varies depending on context. The applicability of more complex text analysis systems that

are based on the construction of knowledge bases covering the detailed structure of particular subject areas,

together with inference rules designed to derive relationships between the relevant concepts, is even more

questionable in such cases. Complete theories of knowledge representation do not exist, and it is unclear

what concepts, concept relationships, and inference rules may be needed to understand particular texts.[13]

Accordingly, a text analysis and retrieval component must necessarily be based primarily on a study of

the available texts themselves. Fortunately very large text databases are now available in machine-readable

form, and a substantial amount of information is automatically derivable about the occurrence properties

of words and expressions in natural-language texts, and about the contexts in which the words are used.

This information can help in determining whether a query and a text are semantically homogeneous, that

is, whether they cover similar subject areas. When that is the case, the text can be retrieved in response to

the query.

Automatic Indexing

In the Smart system, the vector-processing model of retrieval is used to transform both the available infor-

mation requests as well as the stored documents into vectors of the form:

D

i

= (w

i1

; w

i2

; : : : ; w

it

)

where D

i

represents a document (or query) text and w

ik

is the weight of term T

k

in document D

i

. A weight

of zero is used for terms that are absent from a particular document, and positive weights characterize

�

Department of Computer Science, Cornell University, Ithaca, NY 14853-7501. This study was supported in part by the

National Science Foundation under grant IRI 93-00124.



terms actually assigned. The assumption is that t terms in all are available for the representation of the

information.

In choosing a term weighting system, low weights should be assigned to high-frequency terms that occur

in many documents of a collection, and high weights to terms that are important in particular documents

but unimportant in the remainder of the collection. The weight of terms that occur rarely in a collection is

relatively unimportant, because such terms contribute little to the needed similarity computation between

di�erent texts.

A well-known term weighting system following that prescription assigns weight w

ik

to term T

k

in query

Q

i

in proportion to the frequency of occurrence of the term in Q

i

, and in inverse proportion to `the number

of documents to which the term is assigned.[14, 12] Such a weighting system is known as a tf�idf (term

frequency times inverse document frequency) weighting system. In practice the query lengths, and hence

the number of non-zero term weights assigned to a query, varies widely. To allow a meaningful �nal retrieval

similarity, it is convenient to use a length normalization factor as part of the term weighting formula. A

high-quality term weighting formula for w

ik

, the weight of term T

k

in query Q

i

is

w

ik

=

(log(f

ik

) + 1:0) � log(N=n

k

)

P

t

j=1

[(log(f

ij

) + 1:0) � log(N=n

j

)]

2

(1)

where f

ik

is the occurrence frequency of T

k

in Q

i

, N is the collection size, and n

k

the number of docu-

ments with term T

k

assigned. The factor log(N=n

k

) is an inverse collection frequency (\idf") factor which

decreases as terms are used widely in a collection, and the denominator in expression (1) is used for weight

normalization. This particular form will be called \ltc" weighting within this paper.

The weights assigned to terms in documents are much the same. In practice, for both e�ectiveness and

e�ciency reasons the idf factor in the documents is dropped.[2, 1]

The terms T

k

included in a given vector can in principle represent any entities assigned to a document

for content identi�cation. In the Smart context, such terms are derived by a text transformation of the

following kind:[12]

1. recognize individual text words

2. use a stop list to eliminate unwanted function words

3. perform su�x removal to generate word stems

4. optionally use term grouping methods based on statistical word co-occurrence or word adjacency com-

putations to form term phrases (alternatively syntactic analysis computations can be used)

5. assign term weights to all remaining word stems and/or phrase stems to form the term vector for all

information items.

Once term vectors are available for all information items, all subsequent processing is based on term vector

manipulations.

The fact that the indexing of both documents and queries is completely automatic means that the results

obtained are reasonably collection independent and should be valid across a wide range of collections. No

human expertise in the subject matter is required for either the initial collection creation, or the actual query

formulation.

Phrases

The same phrase strategy (and phrases) used in TREC 1 and TREC 2 ([2, 1]) are used for TREC 3. Any pair

of adjacent non-stopwords is regarded as a potential phrase. The �nal list of phrases is composed of those

pairs of words occurring in 25 or more documents of the initial TREC 1 document set. Phrase weighting

is again a hybrid scheme where phrases are weighted with the same scheme as single terms, except that

normalization of the entire vector is done by dividing by the length of the single term sub-vector only. In

this way, the similarity contribution of the single terms is independent of the quantity or quality of the

phrases.



Text Similarity Computation

When the text of document D

i

is represented by a vectors of the form (d

i1

; d

i2

; : : : ; d

it

) and query Q

j

by the

vector (q

j1

; q

j2

; : : : ; q

jt

), a similarity (S) computation between the two items can conveniently be obtained

as the inner product between corresponding weighted term vector as follows:

S(D

i

; Q

j

) =

t

k=1

(d

ik

� q

jk

) (2)

Thus, the similarity between two texts (whether query or document) depends on the weights of coinciding

terms in the two vectors.

TREC 3 Approaches

One way to improve e�ectiveness is to better represent the information need by adding useful terms to

the query. The classical example of this is relevance feedback, where terms occurring in known relevant

documents are added to the query.

The relevance feedback process can be divided into two phases: query term selection and query term

weighting. Our basic approach to relevance feedback heavily emphasizes query term weighting. Proper

weighting allows us to massively expand the query by adding any term for which we have any evidence of

usefulness. Experiments show that e�ectiveness improves linearly as the log of the number of added terms,

up to a point of diminishing improvement [3]. This point of diminishing returns for the TREC environment

seems to be about 300 terms.

How can so many terms be added, when it is known that many of them are poor terms and have no

connection with relevance? One contributing factor is simply that the good terms tend to co-occur non-

randomly within the relevant documents (as opposed to the rest of the collection) and the poor terms tend

to co-occur randomly. Massive expansion establishes a background \noise" similarity due to random poor

term matches. The good documents escape the noise due to several good terms co-occurring within the

document.

Some other expansion methods (eg naive thesaurus lookup) do not share the above property. When

expansion occurs inappropriately, several connected poor words are added. Attempting to expand the word

\bank" for instance, one might add several �nancial terms, which may reinforce each other and cause �nancial

documents to be retrieved. This would result in poor retrieval if \bank" were referring to the side of a river.

The poor terms for this query expansion are not co-occurring randomly and have a much greater e�ect on

the �nal similarity.

Expansion by hundreds of terms occurring in known relevant documents worked so successfully in routing

of TREC 2, that it was decided to use the same expansion techniques in the ad-hoc portion of TREC 3. In

the ad-hoc environment, there are no known relevant documents. Instead, the top retrieved documents are

all assumed to be relevant for the purposes of expansion and weighting. If many of the top documents are

relevant, then the process achieves the same e�ect as relevance feedback. If none of the top documents are

relevant, then the expansion is likely to have a very negative e�ect as the refashioned query will emphasize

the same mistakes that caused the poor initial retrieval. The end result is thus likely to be a mixture of

improvements for many queries, but deterioration of results for others.

The idea of treating the top documents as being relevant in the absence of any real relevance judgements

is not a new one. It has probably been done dozens of times in the past (eg, it was a standard Cornell

information retrieval class project in the early 1980's). In general, at least in the Cornell experience, it

helped some queries but the negative results predominated on the standard small test collections. What

makes the approach successful in the TREC environment is the combination of better initial retrieval, and

the collection characteristics of TREC. There are many more relevant documents per query within TREC,

and those documents are longer than in the small test collections. So there is more of a chance for terms from

the relevant retrieved documents to meaningfully distinguish themselves from the terms in the non-relevant

documents. Other groups in TREC 2 were able to take advantage of this situation and improve performance,

noticeably UCLA and CMU [6, 7].



Another focus of our work the past few years, both within TREC and outside it, has been trying to

take advantage of local similarities between a small part of the document and the query. We've shown that

local similarities can be used very e�ectively to ensure that terms in common between document and query

are being used in the same semantic sense. However, while this semantic disambiguation is important in

other environments [16], the very long and rich TREC queries provide enough global context to disambiguate

without going to a local level. Our e�orts to improve e�ectiveness using local disambiguation using sentences

and short paragraphs did not work in TREC 1 and TREC 2. For TREC 3, we lengthen our local contexts,

and treat the local passage as being a mini-document. Adopting the approach of UMass [17, 4, 5], we de�ne

our local contexts to be a set of overlapping text windows, each of �xed size. This avoids the length and

normalization problems that adversely a�ected our approach in TREC 2.

System escription

The Cornell TREC experiments use the SMART Information Retrieval System, Version 11, and are run on

a dedicated Sun Sparc 20/51 with 160 Megabytes of memory and 18 Gigabytes of local disk.

SMART Version 11 is the latest in a long line of experimental information retrieval systems, dating

back over 30 years, developed under the guidance of G. Salton. Version 11 is a reasonably complete re-

write of earlier versions, and was designed and implemented primarily by C. Buckley. The new version is

approximately 44,000 lines of C code and documentation.

SMART Version 11 o�ers a basic framework for investigations of the vector space and related models

of information retrieval. Documents are fully automatically indexed, with each document representation

being a weighted vector of concepts, the weight indicating the importance of a concept to that particular

document (as described above). The document representatives are stored on disk as an inverted �le. Natural

language queries undergo the same indexing process. The query representative vector is then compared with

the indexed document representatives to arrive at a similarity (equation (2)), and the documents are then

fully ranked by similarity.

Routing Experiments

Our routing experiments in TREC 3 are only slightly di�erent from those carried out for TREC 2. The basic

routing approach chosen is the feedback approach of Rocchio [11, 15, 1]. Expressed in vector space terms,

the �nal query vector is the initial query vector moved toward the centroid of the relevant documents, and

away from the centroid of the non-relevant documents.

Q

new

= A �Q

old

+ B � average wt in rel docs

� C � average wt nonrel docs

Terms that end up with negative weights are dropped (less than 3% of terms were dropped in the most

massive query expansion below).

The parameters of Rocchio's method are the relative importance of the original query, the relevant doc-

uments, and the non-relevant documents (A,B,C above); and then exactly which terms are to be considered

part of the �nal vector.

The investigations of TREC 2 and elsewhere [3] suggest that the decision of which terms to add is not a

hard decision: just add all terms occurring in relevant documents that can be e�ciently handled. We sort

all terms occurring in the relevant documents by the number of relevant documents in which they occur,

with ties being broken by considering the highest average weight in the relevant documents. We then add

the top 300 single terms and top 30 phrases to the original query and reweight according to the Rocchio

formula above with A,B,C parameters being 8,16,4. This forms the queries for our CrnlRR run.

uery-by- uery ariations

While the massive expansion Rocchio approach works well for most queries, examining past individual query

results reveals that for about 15% of the queries, not expanding works better than massive expansion[3].



Run Best median median

CrnlRR
1 44 5

Crnl R
2 37 11

Table 1: Comparative Routing Results

Run : A:B:C R-prec Total Rel recall-prec

1.
no fdbk 0.0 8.0.0 3461 5975 2985

2.
no expand 0.0 8.8.4 3698 6342 3163

3.
CrnlRR 300.30 8.16.4 4064 7134 3699

4.
Crnl R varies varies 4013 7215 3725

Table 2: Routing evaluation

Our second o�cial run, like our second o�cial run of TREC 2, is an attempt to choose feedback parameters

on a per-query basis to avoid expanding on those queries where no expansion might be appropriate. We also

want to examine other feedback approaches for those queries with no, or little, expansion. In TREC 1 and

TREC 2 it was noticed that the probabilistic approaches, e.g., the classical probabilistic formula [10] and

Dortmund's RPI formula [8, 9], did better than the Rocchio approach if there was little expansion. Perhaps

a choice among feedback methods would improve e�ectiveness; our TREC 2 results suggested just changing

expansion amounts on a per-query basis would yield only a small improvement.

We examine seven di�erent approaches:

1. : Original query, no expansion or reweighting.

2. : Probabilistic weights, no expansion.

3. : RPI model, no expansion

4. : RPI model, expansion by 30 single terms

5. : Rocchio, expansion by 30 single terms and 10 phrases

6. : Rocchio, expansion by 500 single terms

7. : Rocchio, expansion by 500 single terms and 30 phrases, with A,B,C parameters being 8,32,4

We ran each of these approaches using the 50 queries of the TREC 3 routing task, learning on D1 and

testing on D2. This determined which approach should be used for which queries in the routing task. The

�nal queries for the Crnl R run are formed by using the best approach on each query, and learning from

the full D12 set of relevance judgements.

outing esults

Both CrnlRR and Crnl R do quite well in comparison with other TREC 3 routing runs (Table 1). These

comparative results are not quite as good as in TREC 2, suggesting that some other groups might have

caught up to us.

Evaluation measures in Table 2 for both the o�cial and some non-o�cial runs show the importance of

query expansion. Run 1 is the base case original query only (ltc weights). Just re-weighting the query terms

without adding any terms according to Rocchio's algorithm gives a 6% improvement. Both reweighting and

massively expanding gives a 24% improvement.

The run Crnl R is actually quite disappointing. Like our initial attempts at per-query variations in

TREC 2, we get very little improvement over using massive expansion for all queries. Table 3 shows that



Approach Expansion Rocchio Num Num better

Sing.phrs A:B:C ueries than CrnlRR

1.
Orig. query 0.0 n.a. 3 1

2.
Prob 0.0 n.a. 4 0

3.
RPI 0.0 n.a. 9 3

4.
RPI 30.0 n.a. 2 1

5.
Rocchio 30.10 8.16.4 3 1

6.
Rocchio 500.0 8.16.4 9 5

7.
Rocchio 500.30 8.32.4 20 15

Table 3: Routing Approach Variation

of all the feedback variations tried, the only ones that consistently do better than the CrnlRR Rocchio

expansion by 330 terms, are the queries which use Rocchio and expand by even more terms. The low

expansion approaches did better on their queries when learning on D1 and testing on D2, but tended to do

worse on their queries when learning on D12 and testing on D3. This suggests that there is no inherent

property of the semantics of an individual query that can predict whether massive expansion will work.

Instead, it suggests the e�ectiveness of massive expansion depends on the properties of the documents, in

both the learning set and the test set.

Ad-hoc Results

The �rst of Cornell's two ad-hoc runs, CrnlEA, is very similar to the Rocchio routing run, CrnlRR. The initial

query is expanded and reweighted using Rocchio's feedback approach. The major di�erence is that there are

no known relevant documents from which to draw the expansion terms. Instead, an initial retrieval is done,

and the top 30 documents are all assumed to be relevant for the purposes of expansion and reweighting.

While this is certainly not as good as having real relevance judgements (especially if the initial retrieval

obtains no relevant documents), these terms should still have some connection to relevance.

The initial query is expanded by 500 terms and 10 phrases. In the future, perhaps more phrases should

be chosen. However, in this initial experiment having many phrases would complicate the analysis of what

is actually happening. The A:B:C parameters of the Rocchio equation are set to 8.8.0. These parameters

weight the original query terms higher than in standard relevance feedback, and disregard occurrences among

the non-relevant documents. The parameters were chosen after a small set of trial runs using the �rst 150

queries on D12.

The second of Cornell's ad-hoc runs, CrnlLA, is this year's local/global run. At retrieval time, each

document is assigned a similarity based upon both the document's global similarity to the query, and upon

the similarities of smaller parts of the document to the query. For this experiment, the parts of the document

are de�ned to be text windows of 200 words in length. One set of text windows starts at the beginning of

the document, with a new window every 200 words. Another set of text windows on that document starts

100 words into the document, with a new window every 200 words. The two sets of overlapping windows

ensure that every semantically coherent chunk of text of length less than 100 words will be included whole

in at least one text window.

The text of each local window is indexed and weighted with binary term weights (SMART-nomenclature

\bnn" weights). The weights in the text windows do not need to be normalized since the text windows are

almost all of the same length. An \idf" factor does not need to be included in the local document weights

since it will be included in the query weight of any matching term. A pure \tf" factor that gives a weight

proportional to the number of times a term occurs in the text window will over-weight common words. Thus

the \bnn" weighting scheme would seem to be appropriate.

The question of how to combine a global similarity with the local similarity of a document has yet to

be resolved. Work done in preparation for TREC 2 strongly suggested that the result should be some

combination of the global similarity with the best local similarity of the document (as opposed to, say, an



Run Best median median

CrnlEA
3 38 9

CrnlLA
0 49 1

Table 4: Comparative Ad-hoc results

average of local similarities). Other work showed that the values of both global and local similarities are

query dependent. A good local similarity for one query may be a poor local similarity for another query. This

suggests some sort of query relativization factor may be needed. Several functions were tried in preparation

for TREC 3; the one used for the run CrnlLA is

FinalSim = GlobalSim+ 2 �GlobalSim� LocalSim=BestLocalSim (3)

where

� GlobalSim is the global similarity between an \ltc" weighted query, Q, and an \lnc" weighted docu-

ment, D.

� LocalSim is the highest similarity of any \bnn" weighted text window of D with the \ltc" weighted

query Q.

� BestLocalSim is the highest LocalSim for any examined document for this query Q.

The CrnlLA retrieval procedure to return rankings for 1000 documents is to

1. Perform a global search retrieving the top 1750 documents.

2. For each retrieved document,

(a) Fetch the original document,

(b) Break it into text windows,

(c) Index and weight each text window separately

(d) Calculate the similarity of each text window to the query.

(e) Set the document's LocalSim to the highest of these similarities.

3. Set BestLocalSim to the highest LocalSim among the 1750 documents

4. Use Equation 3 to calculate a �nal similarity for the 1750 documents.

5. Rank the �nal similarities and return the top 1000.

The expansion run, CrnlEA, and the local/global run, CrnlLA, are very di�erent but each perform well

when compared against other systems. Both approaches perform at or above the median in most queries, as

can be seen in in Table 4.

As could be expected, CrnlEA is somewhat inconsistent, performing extremely well on some queries, but

dipping below the median on several others. Presumably this is related to the quality of the initial search,

though this has not yet been tested. CrnlLA is almost always above the median, but was never the highest

rated run.

Table 5 gives the results of several evaluation measures for CrnlEA, CrnlLA, and a simple \lnc.ltc" vector

run. Each of the TREC 3 approaches gives substantial recall-precision improvement over the pure vector run

(20.3% for CrnlEA, and 16.2% for CrnlLA). However, they get this improvement in very di�erent fashions.



Run Recall- Total Rel Precision Precision

Precision Retrieved 5 docs 100 docs

lnc.ltc
2842 6531 5530 3780

CrnlEA
3419 7267 5760 4168

CrnlLA
3302 6808 6800 4216

Table 5: Ad-hoc results

CrnlEA is a recall oriented approach. It shows a very mild .023 improvement in precision at 5 documents,

but retrieves a very strong 736 more relevant documents than the vector run. CrnlLA, on the other hand,

is a precision oriented approach. It shows a very strong .1270 improvement in precision at 5 documents,

but then a much weaker increase of 277 relevant documents retrieved. It remains to be seen whether the

strengths of these two very di�erent approaches can be combined in one run.

Spanish

One of the fun side-tracks of TREC 3 is the Spanish experiments. About 200 megabytes of Spanish text

and 25 Spanish queries were made available for runs in the ad-hoc environment. Our claim has always been

that SMART is to a large extent language independent, as long as the language is based upon recognizable

word tokens. TREC 3 Spanish presented a chance to test this claim.

Spanis S

Unlike other retrieval systems, SMART uses almost no linguistic knowledge. Enabling SMART to run well

on Spanish text only required 3 subtasks.

1. Make SMART 8-bit clean.

2. Fashion stemming rules for Spanish.

3. Construct a stopword list of common Spanish words.

Extending SMART to handle 8-bit characters (e.g., the accented Spanish characters) instead of 7-bit

ASCII was very simple. About 8 lines of code needed changing, plus a 128 entry table in the tokenizer giving

the class of characters needed to be expanded to 256 entries.

After this was done, the Spanish document set was indexed without any stemming rules or stopwords.

Simple stemming rules were then derived by looking at the sorted dictionary entries and guessing which

lexicographically adjacent entries really represented the same words (guessing since the person doing this

does not speak Spanish!). The �nal stemming rules were:

� Remove �nal \as", \es", \os", \a", \o", \e".

� Change �nal \z" to \c".

Initially the stopword list was composed of the 800 most frequently occurring words in the collection.

This was later trimmed to 342 words by asking a native Spanish speaker to prune the list.

The Spanish collection was then re-indexed using the new stemming rules and stopword list, and was

ready for use. It was, however, somewhat disconcerting to type the �rst query \This is a test", and retrieve

a large set of English documents dealing with standard tests! The explanation turned out to be a partial �le

of English documents that had somehow crept into the distributed collection.

The total time to make SMART Spanish ready was about 5-6 person-hours.



Run Best median median

CrnlES
11 8 4

CrnlVS
1 13 9

Table 6: Comparative Spanish Ad-hoc results

Run
Recall- Total Rel Precision R-Precision

Precision Retrieved 5 docs

CrnlES
5692 2439 7917 5578

CrnlVS
5301 2402 7500 5328

Table 7: Spanish Ad-hoc results

Spanis - oc uns

The two Cornell Spanish runs are CrnlVS, a simple \lnc.ltc" vector run, and CrnlES, a massive expansion

run. Both procedures are described above in the main-line ad-hoc description; aside from the di�erent

database names there is no di�erence in the scripts which run the experiments.

Table 6 shows the two runs both do very well, though the expanded run is signi�cantly better. CrnlES

has the best results on 11 out of the 23 Spanish queries with relevance documents. (But remember that

many fewer groups submitted Spanish runs, so our \share" of best results is expected to be higher.)

The results of the standard evaluation measures show extremely good retrieval e�ectiveness in Table 7.

However, many of these values are arti�cially high. Unlike the mainstream ad-hoc and routing pools of

judged documents, the Spanish pool was very small and narrow, and it's clear that a lower percentage of

relevant documents were judged, thus somewhat in ating the recall �gures. Comparative evaluation between

runs should still be valid though, even between judged and unjudged runs. For example, CrnlES is de�nitely

better than CrnlVS even though CrnlVS was a judged run and CrnlES was not.

After the actual conference, additional relevance judgements on the Spanish TREC runs were made by

NIST. The top 150 documents from every Spanish run were judged (as opposed to the judgement of 100

documents from one run of each participant, which is what Table 7 was based upon.) Table 8 show that the

additional judgements had very little e�ect on the �nal results, despite the addition of 50% more relevant

documents to the total judged pool.

E ciency

E�ciency issues are becoming increasingly important in these TREC experiments as retrieval methods

become more complicated and expensive. Thus it is important to have at least some discussion of e�ciency

within a paper like this.

SMART is a reasonably fast system. It indexes documents at a rate of about 600 megabytes per hour.

Simple vector retrieval runs can be quite fast. Calculating the similarities for the CrnlVS run took much

less than 2 seconds for all 25 queries together (keeping track of the top 1000 documents for each query was

Run
Recall-Precision

Old Judgements New Judgements

CrnlES
5692 5697

CrnlVS
5301 5013

Table 8: Spanish with New Judgements



Methodology Run Recall- Improvement over

Precision Previous ear

TREC 1
ntc.ntc 2067 -

TREC 2
lnc.ltc 2842 38%

TREC 3
CrnlEA 3419 20%

TREC 3
CrnlLA 3302 16%

TREC 4
??? ???? 20%?

Table 9: Runs of queries 151{200 on D12

done rather ine�ciently and took much longer!). But the more complicated retrieval methods take anywhere

from 9 seconds per query (CrnlRR) to 189 seconds per query (CrnlLA).

Luckily, in actual practice the execution times of the complicated methods can be cut down drastically.

The massive query expansion approaches will bene�t greatly from optimization e�orts such as those discussed

in our TREC 1 work. Some of the e�ectiveness increase of the massive query expansion will have to be traded

back in order to get reasonable e�ciency, but the results of TREC 1 show the e�ectiveness cost will not be

prohibitive.

The other very time consuming approach of ours is the local/global matching (CrnlLA). The re-indexing

of the local parts of a document can be done o�-line and stored. When this time savings is combined with the

decreased time due to a user asking for a reasonable number of documents (instead of 1000), retrieval time

should be not much more than double an ordinary vector search. This should be quite feasible in practice,

depending on the particular constraints of a site, of course.

Comparison ith TREC and TREC

It is di�cult to determine how much systems are improving from TREC to TREC since the queries and the

documents are changing. For example, in TREC 3 the \Concept" �eld of the queries was removed. These

terms proved to be very good terms for retrieval e�ectiveness in TREC 1 and TREC 2; thus the TREC 3

task without them is a harder task. To get a handle on how much SMART has improved in the past two

years, Table 9 presents the results of running our TREC 1 and TREC 2 systems on the TREC 3 ad-hoc task.

SMART has been improving at a rate of over 20% per year so far, and given our work since we submitted

the TREC 3 runs, we would expect that improvement rate to continue at least another year.

Conclusion

Automatic massive query expansion proves to be very e�ective for routing. Conventional relevance feedback

techniques are used to weight the expanded queries. Once again, however, the option to choose feedback

approaches on a per-query basis doesn't help signi�cantly, where the choice is based on what worked in the

past for this query.

Massive query expansion also works in general for the ad-hoc experiments, where expansion and weighting

are based on the top initially retrieved documents instead of known relevant documents. In the ad-hoc envi-

ronment this approach may hurt performance for some queries (e.g., those without many relevant documents

in the top retrieved set), but overall proves to be worthwhile with an average 20% improvement.

Incorporating both global and local similarity information in the �nal ranking is useful, with improve-

ments of 16%. Care needs to be taken, though, both in the de�nition of a local part of a document (making

all parts equal length helps the weighting task enormously), and in the combination of the local and global

similarity.

SMART is very easily adaptable to at least some foreign languages, even without knowledge of the

languages. Performance of SMART appears to be just as good in the foreign language as in English, though

this is tough to judge.



r

[1] Chris Buckley, James Allan, and Gerard Salton. Automatic routing and ad-hoc retrieval using SMART

: TREC 2. In D. . Harman, editor, roceedings o t e econd ext trieva on erence - ,

pages 45{56. NIST Special Publication 500-215, March 1994.

[2] Chris Buckley, Gerard Salton, and James Allan. Automatic retrieval with locality information using

SMART. In D. . Harman, editor, roceedings o t e irst ext trieva on erence - , pages

59{72. NIST Special Publication 500-207, March 1993.

[3] Chris Buckley, Gerard Salton, and James Allan. The e�ect of adding relevance information in a rele-

vance feedback environment. In W. Bruce Croft and C.J. van Rijsbergen, editors, roceedings o t e

eventeent nnua nternationa on erence on esearc and eve o ment in n orma-

tion etrieva , pages 292{300, New ork, July 1994. Springer-Verlag.

[4] James P. Callan and W. Bruce Croft. An evaluation of query processing strategies using the TIPSTER

collection. In Robert orfhage, Edie Rasmussen, and Peter Willett, editors, roceedings o t e ixteent

nnua nternationa on erence on esearc and eve o ment in n ormation etrieva ,

pages 347{355, New ork, June 1993. Association for Computer Machinery.

[5] W. Bruce Croft, James Callan, and John Broglio. TREC-2 routing and ad-hoc retrieval evaluation using

the IN UER system. In D. . Harman, editor, roceedings o t e econd ext trieva on erence

- , pages 75{84. NIST Special Publication 500-215, March 1994.

[6] E. Efthimiadis and P. Biron. UCLA-Okapi at TREC-2: uery expansion experiments. In D. . Harman,

editor, roceedings o t e econd ext trieva on erence - , pages 279{290. NIST Special

Publication 500-215, March 1994.

[7] D. Evans and R. Le�erts. Design and evaluation of the CLARIT-TREC-2 system. In D. . Harman,

editor, roceedings o t e econd ext trieva on erence - , pages 137{150. NIST Special

Publication 500-215, March 1994.

[8] Norbert Fuhr. Models for retrieval with probabilistic indexing. n ormation rocessing and anagement,

25(1):55{72, 1989.

[9] Norbert Fuhr and Chris Buckley. Optimizing document indexing and search term weighting based on

probabilistic models. In D. . Harman, editor, roceedings o t e irst ext trieva on erence

- , pages 89{99. NIST Special Publication 500-207, March 1993.

[10] S.E. Robertson and . Sparck Jones. Relevance weighting of search terms. ourna o t e merican

ociet or n ormation cience, 27(3):129{146, May-June 1976.

[11] J.J. Rocchio. Relevance feedback in information retrieval. In Gerard Salton, editor, e

etrieva stem| x eriments in utomatic ocument rocessing. Prentice Hall, Englewood Cli�s,

NJ, 1971.

[12] Gerard Salton. utomatic ext rocessing | t e rans ormation, na sis and etrieva o n ormation

om uter. Addison-Wesley Publishing Co., Reading, MA, 1989.

[13] Gerard Salton. Developments in automatic text retrieval. cience, 253:974{980, August 1991.

[14] Gerard Salton and Chris Buckley. Term-weighting approaches in automatic text retrieval. n ormation

rocessing and anagement, 24(5):513{523, 1988.

[15] Gerard Salton and Chris Buckley. Improving retrieval performance by relevance feedback. ourna o

t e merican ociet or n ormation cience, 41(4):288{297, 1990.

[16] Gerard Salton and Chris Buckley. Automatic text structuring and retrieval: Experiments in automatic

encyclopedia searching. In roceedings o t e ourteent nnua nternationa on erence

on esearc and eve o ment in n ormation etrieva , pages 21{30, 1991.



[17] Craig Stan�ll and David L. Waltz. Statistical methods, arti�cial intelligence, and information retrieval.

In Paul S. Jacobs, editor, ext- ased nte igent stems: urrent esearc and ractice in n ormation

xtraction and etrieva . Lawrence Erlbaum Associates, Inc., Hillsdale, NJ, 1971.


