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Abstract

We discuss two learning algorithms for text filtering: modified
Rocchio and a boosting algorithm called AdaBoost. We show
how both algorithms can be adapted to maximize any general
utility matrix that associates cost (or gain) for each pair of ma-
chine prediction and correct label. We first show that AdaBoost
significantly outperforms another highly effective text filtering
algorithm. We then compare AdaBoost and Rocchio over three
large text filtering tasks. Overall both algorithms are compara-
ble and are quite effective. AdaBoost produces better classifiers
than Rocchio when the training collection contains a very large
number of relevant documents. However, on these tasks, Roc-
chio runs much faster than AdaBoost.

1 Introduction

With the explosion in the amount of information available elec-
tronically, information filtering systems that automatically send
articles of potential interest to a user are becoming increasingly
important. If users indicate their interests to a filtering system
with some examples of their liking and disliking, a system can
automatically learn a user profile or a relevance classifier for a
user. As and when a new article exhibits a substantial match to
a user’s profile, it is filtered and sent to the user. Thus text filter-
ing is just binary text classification into the categories “relevant”
and “not relevant.”

The problem of text filtering has been studied in two dif-
ferent communities — machine learning (ML) and information
retrieval (IR). Many algorithms for text filtering have been pro-
posed and evaluated in the past, for example, Bayesian classi-
fiers, k nearest neighbors, neural networks, rule-learning algo-
rithms, and many more [17, 20, 40, 2, 41, 14, 22, 8, 24]. Most
studies use Rocchio’s method [28], a well known algorithm in
the IR community (traditionally used for relevance feedback and
more recently for document routing [38]), as a comparison base-
line for their classifiers. However, most such studies use a weak
version of Rocchio’s algorithm, not well-suited for text filtering.
In recent years, the IR community has proposed several modi-
fications to Rocchio’s algorithm that have vastly improved the
performance of this algorithm: better term weighting [26, 35],
query-zoning [36], and dynamic feedback optimization [6] be-
ing the three most notable improvements. In this study, we adapt
a state of the art Rocchio’s algorithm for the text filtering task,
and compare it to a fairly new ML algorithm called “boosting.”

We first develop a text filtering algorithm based on Freund
and Schapire’s AdaBoost algorithm [9], which is currently the
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most successful of a family of boosting algorithms. The main
idea of boosting is to generate many, relatively weak classifi-
cation rules and to combine these into a single highly accurate
classification rule. Boosting algorithms have attractive theoreti-
cal properties, and have also been shown to perform well exper-
imentally on more standard machine learning tasks [10, 25, 4].
We compare AdaBoost to Sleeping-Experts, an algorithm pro-
posed by Blum [3], studied further by Freund et al. [11], and
first applied to text filtering by Cohen and Singer [8]. This al-
gorithm has been shown to be more effective than many current
text filtering algorithms [8]. We show that, for text filtering,
AdaBoost is definitively superior to Sleeping-Experts. We then
compare AdaBoost to Rocchio’s method and show that the two
algorithms are quite competitive. Even though both algorithms
learn a linear classifier, AdaBoost is superior to Rocchio when
there is a large amount of training data to learn from. However,
it is much faster to train a Rocchio classifier.

Previous studies in text filtering have used many different
datasets and many different evaluation measures. This renders
a relative comparison of any two approaches almost impossible.
As described in the next section, most evaluation measures used
in the past for evaluating filtering effectiveness are unfit for the
purpose. Recently the TREC conferences have been moving
toward the use of utility as the measure of choice for evaluating
text filtering [18, 19, 13]. This study also presents results using
utility that can be used by other researchers for comparison
purposes in the future.

To summarize, in this study we aim to:� Develop a new algorithm for text filtering based on
boosting, and show that our algorithm is better than
Sleeping-Experts, another highly effective algorithm for
text filtering.� Adapt a recent version of Rocchio’s algorithm for text
filtering, and study the relative merits of boosting-based
and Rocchio-based classifiers.� Present results based on new and better evaluation mea-
sures that can be used by other researchers in the future
for comparison.

The rest of this study is organized as follows. Section 2 dis-
cusses the evaluation measures used for text filtering. Section 3
describes an adaptation of AdaBoost for text filtering. Sec-
tion 4 presents a modified version of Rocchio’s algorithm for
text filtering. Section 5 describes the datasets used in this study.
Section 6 describes our experiments and discusses the results.
Finally, Section 7 concludes the study.

2 Evaluation measures

Past studies on text filtering have used a variety of measures for
evaluating performance. One measure that is frequently used in
doing cross-system comparisons is the recall-precision break-
even point. Proposed by Lewis in [17], this measure has been



the measure of choice in many studies on text filtering [17, 21, 8,
24, 39, 23, 15]. Roughly speaking, break-even point is the point
at which recall of a filtering system is the same as its precision.
So if the break-even point of a system is said to be 0.45, then
at recall 0.45, the precision of the system is also 0.45. The aim
of a filtering system is to obtain as high a break-even point as
possible.

This measure, though popular, has several problems for eval-
uating a filtering system [16]:� Often, we need to interpolate the scores to obtain the

break-even point. Interpolation gives values not achiev-
able by the system.� The point where recall equals precision is neither a desir-
able nor an informative target from a user’s perspective.

We strongly believe that break-even point should not be used for
evaluating text filtering effectiveness, and do not use it in this
study.

Some other measures that have been used to evaluate text
filtering are:� Average precision, or precision at a fixed rank cutoff:

Many studies have used one of these measures to evaluate
filtering effectiveness [2, 40, 41, 22, 1, 7]. These mea-
sures are intended to evaluate the ranking effectiveness of
a system [31], not its filtering effectiveness. Even though
the filtering effectiveness of a system is related to its rank-
ing effectiveness, this relationship is not strong enough to
use ranking evaluation measures to evaluate text filtering.� Van Rijsbergen’s F-measures: Used in [20, 22, 8, 39]
to evaluate filtering, this is a single valued measure that
depends upon the relative importance a user assigns to
recall and precision (see [37], pp. 168–176). The main
drawbacks of this measure are that its value is not directly
interpretable by a user, and it is usually hard for a user
to judge the relative importance of recall and precision.
For example, most users would find it hard to say whether
recall is twice as important as precision for them, or thrice,
or some other ratio. However, in our view, the F-measures
is the best suited measure (among the above measures) for
evaluating filtering.

A big drawback of all the measures listed above is their
dependence on recall. Recall is not available until all the test
documents have been seen. These measures can’t be used to
evaluate a system on-the-fly, i.e. to compute any of these mea-
sure if only a portion of the documents have been classified and
the rest still need to be classified. Thus, if for instance a user
wants to check at the end of the day how a filtering system is
doing, he or she would not be able to assess the performance of
the system using the above measures.

In this study we use three utility-based evaluation measures
that don’t suffer from the drawbacks mentioned above. We
also report performance results for non-interpolated average
precision1, and F�=1 (which is 2�recall �precisionrecall+precision ) through our

web page2. Though we believe that average precision (and to
some degree F�=1) is not well suited to evaluate filtering effec-
tiveness, we still report these figures for comparison purposes
with other research.

1Following the notation used in later sections, let Rank(d) be the rank as-
signed by the classifier to document d and let the set of relevant document be
denoted by Rel. Then, the non-interpolated average precision is,

1jRelj Xd2Rel jfd0jd0 2 Rel; Rank(d0) � Rank(d)gjRank(d) :
2www.research.att.com/�singhal/sigir98-rocboost.dat

Utility

Recently, the TREC text filtering evaluations have been using
utility measures, which assign rewards (or penalties) for each
pair of machine prediction and correct label [19, 13, 14]. Let r+
be the number of relevant documents that are classified relevant
by the machine, and r� the number of relevant documents mis-
classified as irrelevant. Similarly, n+ and n� are the number
of non-relevant documents classified as relevant and irrelevant,
respectively. With each pair of human judgment: relevant or
non-relevant (rel or nrel, respectively), and machine prediction
(+ or �) we associate a utility value. We denote the utility
values by urel+, unrel+, urel� and unrel�. Therefore, the
overall performance of a classifier in terms of the utility matrix
is r+urel+ + r�urel� + n+unrel+ + n�unrel�. The aim of
a filtering system then, is to maximize the utility.

The first evaluation measure we use—classification error—
is simply the number of mistakes a classifier makes, i.e. the sum
of the number of positive (relevant) documents that are classified
as negative, and the number of non-relevant documents classi-
fied as positive. Note that minimizing the classification error is
equivalent to maximizing a utility when urel+ = unrel� = 0
and urel� = unrel+ = �1. Therefore, a learning algorithm
that maximizes utility can be used for minimizing the classifi-
cation error.

One problem with the classification error is that for datasets
with very few relevant documents, a classifier that uses the sim-
ple strategy of predicting that every document is non-relevant, is
able to achieve very low error. To handle this common difficulty,
we need to specifically reward a classifier for finding relevant
documents. We therefore use two other utility measures, Util-1
and Util-2 (described below) which explicitly reward a system
for finding relevant documents. In summary, the utility measures
used in this study are:urel+ urel� unrel+ unrel�

Error: 0 �1 �1 0
Util-1: 3 0 �2 0
Util-2: 3 �1 �1 0

3 Boosting for text filtering

In this section, we describe how we have adapted Freund and
Schapire’s AdaBoost boosting algorithm [10] for text filtering.
The main idea of boosting is to combine many “rules-of-thumb.”
For example, in this study, we use rules-of-thumb which test on
the presence of a term, such as the following simple rule: “If
the word ‘money’ appears in the document then predict that
the document is ‘relevant’; otherwise predict ‘not relevant.’ ”
Clearly, a simple-minded rule of this kind will misclassify many
documents. The main idea of boosting, however, is to generate
and combine many such rules in a principled manner to produce
a single highly accurate classification rule.

Formally, the rules-of-thumb are called weak hypotheses.
Boosting assumes access to an algorithm or subroutine for gen-
erating these rules-of-thumb, called the weak learner or weak
learning algorithm. The boosting algorithm calls the weak
learner many times to generate many rules-of-thumb, and these
are then combined into a single classification rule called the final
or combined hypothesis.

One main feature of the boosting algorithm is that, during the
course of its execution, it assigns different importance weights
to different training documents. The weak learning algorithm
takes these weights into consideration, and chooseseachrule-of-
thumb so as to correctly classify as many documentsas possible,
taking into account the greater importance of correctly classify-
ing documents which have been assigned greater weight. As the
algorithm progresses, training documents that are hard to clas-
sify correctly get incrementally higher weights while documents



Input:N documents and labels: h(d1; y1); : : : ; (dN ; yN )i whereyi 2 f�1;+1g;
integer T specifying number of iterations

Initialize D1(i) (for classification error, D1(i) = 1=N )
Do for s = 1; 2; : : : ; T :

1. Call WeakLearn and get a weak hypothesis hs
2. Calculate the error of hs: �s = Xi:hs(di)6=yi Ds(i):
3. Set �s = 1

2 ln
�

1 � �s�s �
.

4. Update distribution:Ds+1(i) = Ds(i) exp(��syihs(di))Zs= Ds(i)Zs �n e��s if hs(di) = yie�s if hs(di) 6= yi
where Zs is a normalization factor.

Output the final hypothesis:h�n(d) = sign

 TXs=1

�shs(d)!:
Figure 1: AdaBoost algorithm for binary text filtering

that are easy to classify get lower weights. This, in effect, forces
the weak learning algorithm to concentrate on documents that
have been misclassified most often by the previously derived
rules-of-thumb.

The final combined hypothesis classifies a new document by
computing the prediction of each of the weak hypotheses on this
document and taking a (weighted) vote of these predictions.

A description of AdaBoost is shown in Figure 1. AdaBoost
takes as input a training set of N document-judgment pairsh(d1; y1); : : : ; (dN ; yN )i where di is a document in the training
collection, and yi 2 f�1;+1g is the label associated with the
document where +1 or �1 means that the document is relevant
or irrelevant (as judged by a human expert).

As just described, AdaBoost calls the weak learning algo-
rithm WeakLearn repeatedly in a series of rounds. On round s,
AdaBoostprovides WeakLearn with a set of importance weights
over the training set. In response, WeakLearn computes a weak
hypothesis (rule-of-thumb) hs which, given a documentd, clas-
sifies it as +1 (relevant) or �1 (non-relevant). We later discuss
the weak learner that was used in our experiments.

The importance weights are maintained formally as a distri-
bution D over training documents. As this distribution changes
after each round, we denote the distribution before round s byDs. The weight of a training document di under distributionDs is written Ds(i), and we maintain the condition that Ds(i)
is always positive and

PNi=1 Ds(i) = 1. Initially, for classifica-
tion error, we set all the weights equally so that D1(i) = 1=N .
(As described below, a different initialization procedure is used
for other utility functions.)

The goal of the weak learner is to find a rule-of-thumb which
misclassifies as few documents as possible, relative to the distri-
bution Ds. Formally, the weak learner attempts to find a weak
hypothesis hs with low weighted error�s = Xi:hs(di)6=yi Ds(i): (1)

This error can be interpreted as the probability of misclassifying
a document chosen randomly according to distribution Ds. It
is the sum of the weights of all relevant documents classified
as irrelevant by hs, and all irrelevant documents classified as
relevant.

Having obtained a hypothesis hs from WeakLearn, Ada-
Boost next updates the weights of all the documents in such a
way that documents classified correctly get a lower weight and
the misclassified documents get a higher weight. To be more
specific, AdaBoost multiplies the weight of each document cor-
rectly classified by hs by e��s , and the weight of each incor-
rectly classified document by e�s . Here, �s is a number whose
computation is discussed below. Assuming for the moment that�s is positive, this update of the weights has the effect of de-
creasing the weights of correctly classified documents (sincee��s < 1) and increasing the weight of incorrectly classified
documents (since e�s > 1).

To ensure that the new weights Ds+1 form a distribution
(so that

PNi=1 Ds+1(i) = 1), we then renormalize the weights,
resulting in the update rule shown in Figure 1:Ds+1(i) = Ds(i)Zs �� e��s if hs(di) = yie�s if hs(di) 6= yi
where Zs is a normalization factor. Note also that, because yi
and hs(di) are each �1 or +1, their product is equal to �1
if they disagree, and +1 otherwise. Thus, in general, we can
rewrite the update rule more succinctly as in the figure.

This process of generating weak hypotheses and updating
the weights is repeated for T rounds. How we decide on a value
of T is discussed later in this section. After T rounds, we haveT hypotheses h1; : : : ; hT , as well as the values �1; : : : ; �T .
A new document d is then classified using the following final
hypothesis: h�n (d) = sign

 TXs=1

�shs(d)!;
where sign(x) is +1 if x > 0 and �1 otherwise. In words, the
predictions of all of the weak hypotheses are evaluated on the
new document d, and their predictions are combined by voting.
If more weak hypotheses predict the document is relevant (+1)
rather than irrelevant (�1) then the sum above will be positive
and the combined prediction will be relevant (+1); otherwise
the prediction is irrelevant. However, we do not assign equal
importance to the predictions of each of the weak hypotheses.
Instead, we weight the votes of the different weak hypotheses
using the same values �s which were previously used to update
the distribution Ds.

We now discuss the exact choice of �s. Let �s be the
weighted error of weak hypothesis hs (as computed in Figure 1
and Eq. (1)). We compute �s as�s = 1

2 ln
�

1 � �s�s �:
To understand what this choice entails, suppose that a highly
accurate weak hypothesis hs has been found. Then �s will be
small and �s will be large. This translates into more drastic
updates to the distribution and a greater weight assigned to the
predictions of hs in the computation of the final hypothesis. On
the other hand, if hs is highly inaccurate (with error �s close to
1=2), then �s will be small, the updates to the distribution will
be quite conservative, and the predictions of hs in the final
hypothesis will receive rather low weight. See Freund and
Schapire [10] for more complete motivation for this choice of�s.

For our task, we also allow �s to be negative. This will be
the case whenever a weak hypothesis hs is found with error �s
greater than 1=2. This is discussed further below.



3.1 Finding weak hypotheses

In our algorithm, the weak learner generates the hypothesis hs
as follows. All words and pairs of adjacent words are potential
terms. Our implementation is capable of using arbitrary longn-grams but we restrict ourselves to words and word bigrams
for this study. For each term, the weak learner computes the
error (relative to the distribution Ds) incurred by predicting
that a document is relevant if and only if it contains that term.
Formally, this error is�(t) = Xi:t2di; di 62Rel

Ds(i) + Xi:t62di; di2Rel

Ds(i):
(Here, t 2 d means term t occurs in document d, and d 2 Rel
means document d is relevant.)

Ordinarily, one would select the term which has the lowest
classification error. However, consistent with the main aim of a
classifier, we instead select the term that maximally differenti-
ates relevance and non-relevance. For example, if term ta has
the lowest error, say 0.25, and term tb has the highest error, say
0.90, then tb is a better discriminator of non-relevance than ta is
of relevance. This is because whenever tb is present, we can say
that the document is non-relevantwith a much higher confidence
than the confidence we have in the relevance of a document if it
contains ta. Therefore, we select tb for use in hypothesis hs.

Formally, then, we choose the term that minimizes either�(t) or 1 � �(t). Let ts be the selected term. We then form the
hypothesis hs for a document d using the rule:hs(d) = � +1 if ts 2 d�1 if ts 62 d.

As mentioned above, if we select a term with very high error
(more than 1=2) for use in hypothesishs, the boosting algorithm
automatically assigns a negative weight to that hypothesis. This
means that if a word is a better predictor of non-relevance, then
its presence would automatically reduce the score of a document.

3.2 Boosting with general utility functions

It remains to describe how to modify our algorithm in order to
maximize gain for a general utility matrix. LetU = � urel+ unrel+urel� unrel� �
be a utility matrix. Using the notation introduced in Section 2,
the gain of the classifier is, r+urel+ + r�urel�+ n+unrel+ +n�unrel�. We make the natural assumption that there is more
to be gained from correct classifications than incorrect classifi-
cations, that is, urel+ > urel� and unrel� > unrel+. The
minimum possible gain for a classifier is when it classifies
every document incorrectly; that gain is urel�(r+ + r�) +unrel+(n++n�). If we assign this initial gain to the classifier,
then the aim of a classifier is to maximize its additional gain
above this amount. Every time the classifier classifies a relevant
document correctly, we increase its gain by urel+ � urel�, and
every time a non-relevant document is classified correctly, we
increase its gain by unrel��unrel+ . Nothing is done on a mis-
classification since we have already accounted for all possible
misclassifications.

Thus, we would get the same results if we use the following
utility matrix:U 0 = � urel+ � urel� 0

0 unrel� � unrel+ � :

This utility matrix implies that each relevant document is
“worth” � = (urel+ � urel�)=(unrel� � unrel+) irrelevant
documents. For instance, for Util-1 we get that each relevant
document is worth 3�0

0+2 = 1:5 non-relevant documents, and for

Util-2 we get a factor of 3+1
0+1 = 4. We therefore need to set

the initial distribution of the examples before the first round of
boosting so that it will reflect this ratio between positive and
negative examples. It is fairly straightforward to show that max-
imizing the utility for a matrix U is equivalent to minimizing
the error when the initial distribution is such that the weight of
the relevant documents is � times the weight of the irrelevant
documents.

Formally, then, to handle general utility functions, we need
to modify AdaBoost only in the manner in which the weightsD1 are initialized. Specifically, we setD1(i) = 1Z0

�urel+ � urel� if yi = +1 (di is relevant)unrel� � unrel+ if yi = �1 (di is irrelevant)

where Z0 is a normalization factor which ensures thatPiD1(i) = 1. Note that the rest of the algorithm is unaf-
fected by the change of the initial distribution.

3.3 Choosing the number of rounds

Finally, we need to specify how we set the number of rounds T .
Since there is no theoretical analysis of the number of rounds
neededto boost a weak hypothesis,we set this value empirically.
We found that the following procedure yields good results. We
first run the boosting algorithm until the training error reaches
its minimal value, which often is zero.3 Let T0 be the number
of rounds needed to reach the minimal training error. We then
continue boosting for an addition T0=10 rounds. Thus, the total
number of rounds is (1:1)T0. This typically means that we run
more rounds of the boosting algorithm if the problem is “hard,”
requiring many features to attain a small training error. Put
another way, the size of the resulting classifier, as a function of
the number of features it employs, depends on how “easy” the
classification problem is: the more difficult the problem is the
larger the classifier we build.

4 Rocchio for text filtering

Retrieving useful documents for a user-query has always been a
challenging problem in the field of information retrieval. In its
early days, researchers realized that it is very hard for an average
user to formulate a “good query,” and therefore, for successful
retrieval, aids for good query formulation should be provided to
users. Automatic query formulation using relevance feedback,
once the user has marked some of the documents (possibly
retrieved by the initial user-query) as relevant and some as non-
relevant, has been one of the most successfulmethods in IR [30].

A feedback query creation algorithm developed by Rocchio
in the mid-1960’s has, over the years, proven to be one of the best
relevance feedback algorithms [27, 28]. Rocchio’s algorithm
was developed in the framework of the vector space model [32].
When documents are to be ranked for a query, an ideal query
should rank all the relevant documents above all non-relevant
documents. However, such a query might just not exist, or even
if it does exists for the training data, it might be over-fitting
the training documents and might not generalize to new (test)
documents. Therefore we lower our aims and instead develop a
query that maximizes the difference between the average score
of a relevant document and the average score for a non-relevant

3Although the training error of the combined hypothesis may be zero, it is
possible and not uncommon for boosting to proceed and for further reductions in
the test error to occur. See Schapire et al. [33] for further discussion.



document. Rocchio calls this an optimal query ([28], page 315).
Rocchio shows that under this definition, an optimal query vector
is the difference vector of the centroid vectors for the relevant
and the non-relevant articles,~Qopt = 1R Xd2Rel ~d� 1N � R Xd62Rel ~d (2)
where ~d denotes the weighted term vector for document d, R =jRelj is the number of relevant articles, andN is the total number
of articles in the collection. All negative components of the
resulting query are assigned a zero weight.

To maintain focus of the query, researchers have found that
it is useful to include the original user-query in the feedback
query creation process. Coefficients have been introduced in
Rocchio’s formulation which control the contribution of the
original query, the relevant articles, and the non-relevant articles
to the feedback query. These modifications yield the following
query reformulation function [30]:~Qnew = � ~Qorig + � 1R Xd2Rel ~d� 
 1N �R Xd62Rel ~d (3)
This formulation, which was developed for ranking documents
after relevance feedback, mainly in interactive settings, has also
been used successfully for text filtering. In an information
filtering scenario, once several documents have been marked as
relevant to a user’s information need, a “user profile” is created
using Rocchio’s formulation (Eq. (3)). Any new article that has
high similarity (we use vector inner-product as the similarity
measure in all our experiments, see [29], page 318) to this user
profile is considered potentially useful for the user and is sent to
the user.

Several techniques are known to improve the effectiveness
of Rocchio’s method. The three new developments that have
been quite effective in conjunction with Rocchio’s algorithm
are:

1. Better Term Weights: A much better understanding of
term weights has been developed in the IR community in
recent years [26, 35]. Better term weights in the train-
ing documents yield a better Rocchio query. A better
Rocchio query along with better term weights for the test
documents yields much improved scores (i.e. better rank-
ing) for the test documents.

2. Query Zoning: Recently Singhal et al. [36] have pro-
posed that only a selected set of non-relevant documents
that have some relationship to a user’s interest should be
used in Rocchio’s method. They proposed sampling of
the non-relevant documents to form a query zone.

3. Dynamic Feedback Optimization: Buckley et al. [6]
have shown that further optimizing the term weights pro-
posed by Rocchio’s formulation on the training collection
improves the quality of a feedback query for the test data.

We view these techniques as tools that bring a Rocchio query
closer to the ideal query. We use all these techniques in our
version of Rocchio.

Since there is no initial user-query in a text filtering scenario,
the first factor in Eq. (3), � ~Qorig , is not used in our system.
Also, when using query zones, Singhal et al. [36] have shown
that � = 
 in Eq. (3) is a reasonable parameter setting. There-
fore for text filtering, we are back to using the original Rocchio
formulation of Eq. (2) instead of Eq. (3).

We use the centroid vector of the relevant documents in the
training corpus as the initial query and use this vector to form the
query zone. Here are the steps involved in modified Rocchio’s
method for text filtering:

l tf factor: 1 + log(tf )
L tf factor: 1+log(tf )

1+log(average tf in text)
t idf factor: log(N+1

df )
u normalization factor: 1

0:8+0:2 number of unique words in text
average number of unique words per document

tf is the term’s frequency in text (query/document)N is the total number of documents in the training collection
df is the number of documents that contain the term, and
the average number of words/document is 45 for Reuters-21578,

137 for AP-BODY, and 110 for TREC.
the average number of phrases/document is 27 for Reuters-21578,

40 for AP-BODY, and 37 for TREC.

ltu weighting: l factor� t factor � u factor
Lnu weighting: L factor� u factor
Ltu weighting: L factor� t factor� u factor

Table 1: Term weights

1. Initial query: Create the centroid vector for the rele-
vant documents in the training data. Documents are Ltu
weighted (see Table 1). Remove all words that appear in
fewer than 5% of the relevant documents and all phrases
that appear in fewer than 2% of the relevant documents.
This keeps infrequent (possibly “random”) terms from
influencing the query. Select the highest weighted nw
words and np phrases, where nw is the average number
of words per document, and np is the average number of
phrases per document (Table 1). This is the initial query.

2. Using the above initial query, and Lnu weighted training
documents, form a training “query-zone” by selecting the
most similarMAX (N=100;R) non-relevant documents
for the initial query (using the inner-product similarity).
Here N is the total number of documents in the training
collection and R is the number of relevant documents for
this query (class) in the training collection.

3. Using the non-relevant documents in the query-zone and
all the relevant documents in the training corpus, form
a feedback query using Rocchio’s formulation using the
following constraints/parameters:� Document terms are Ltu weighted.� Only the “non-random” words and phrases, i.e. the

words that appear in at least 5% of the relevant ar-
ticles, and phrases that occur in at least 2% of the
relevant articles are considered for use in the feed-
back query.� Top nw words and np phrases (same as step 1), as
weighted by the original Rocchio formula (Eq. 2)
are retained in the feedback query with weights pre-
dicted by the above formula.

4. Term weights in this query ofnw words andnp phrases are
further optimized using three-pass dynamic feedback op-
timization (DFO) with pass ratios 1.00, 0.50, and 0.25 [6].
Since DFO optimizes average precision in the training col-
lection, and a fixed number of top documents are ranked
in this process [6], we rank the topMAX (500;5R) doc-
uments in this step.

5. The optimized feedback query is used to rank the Lnu
weighted training documents (using inner-product sim-
ilarity). By going down in this ranked list of training
documents, find a similarity threshold that would maxi-
mize the evaluation measure (error rate or utility) on the
training data. This will be the threshold for the classifier.



6. The test documents are Lnu weighted. If a test document
has a similarity higher than the threshold to a feedback
query (classifier), then it is classified as relevant, other-
wise non-relevant.

The above algorithm is quite similar to the routing algorithm
used in [34] except for the following differences:� Since the user query is not being used in any way, the rel-

evant centroid is used to form the query zone. In previous
work on query zones, the initial user query was used for
this purpose [36].� The query zone size (MAX ( N100 ;R)) grows with the class
size for classes that have more than N

100 training relevant
documents.� DFO is also modified to rank more documents for very
large classes (MAX (500;5R)).� Word cooccurrence pairs are not used.

We deliberately didn’t tune Rocchio’s algorithm any further to
cover some of its weaknesses. For example, post-hoc analysis
shows that it is possible to improve Rocchio’s method for large
classes by increasing the number of terms (words and phrases)
used in the classifier. But we didn’t do any such tuning. Though
not straightforward, it is possible to enhance DFO and tune a
Rocchio classifier explicitly to maximize utility. We did not do
any such tuning for this study but plan to investigate this in near
future.

5 Test corpora

We use three different text corpora for testing our algorithms:
Reuters-21578, AP-Body, and TREC-3. For the Reuters-21578
and the AP-Body collections, one should pay special attention to
which particular documents are used in the collection, there are
some possible variations. For the TREC-3 data, we would like
to emphasize that the original topic text supplied by the users is
not being used in our experiments.

5.1 Reuters-21578

The Reuters-21578 text categorization test collection has been
made publicly available from the web page

http://www.research.att.com/�lewis
by David Lewis, who originally compiled the collection. Docu-
ments in this collection were collected from Reuters newswire in
1987. We use the modified Apte split (ModApte), which assigns
9,603 documents dated before April 8, 1987 to the training set,
and 3,299 documents dated from April 8, 1987 to the test set. In
our experiments, we use the ninety TOPIC categories that have
at least one relevant (positive) training documents and at least
one relevant test document.

5.2 AP-Body

This test collection is made up of documents from the AP
newswire included in the TREC disks 1–3 [12]. 142,791 doc-
uments from the years 1988 and 1989 are used as the training
collection, and 66,992 documents from the year 1990 are used
as the test collection. Each document in this collection has a
distinct title field (marked by the SGML tag <HEAD>), and a
distinct body field (marked by the SGML tag <TEXT>). We
only use the body of a document in our experiments. There are
twenty classes in this collection. See [20] for a description of
how the classes for this corpus were derived.

-10

-5

0

5

10

15

20

25

30

35

40

1 4 16 64 256 1024

E
rr

o
r 

D
iff

e
re

n
ce

: 
S

lp
. 
E

xp
. 
- 

A
d
a
B

o
o
st

Number of Positive Examples

Reuters: Error

-50

0

50

100

150

200

250

300

350

128 256 512 1024 2048

E
rr

o
r 

D
iff

e
re

n
ce

: 
S

lp
. 
E

xp
. 
- 

A
d
a
B

o
o
st

Number of Positive Examples

AP-Body: Error

Figure 2: Comparison of AdaBoost and Sleeping-Experts.

This collection was first used by Lewis et al. in [22]. One
should note that even though the original distribution of this
data has 79,919 documents from the year 1988, and 84,678
from the year 1989, making a total of 164,597 training doc-
uments, 21,806 of the documents that have non-standard for-
mats or structures have been omitted by Lewis et al. Simi-
larly, out of the 78,321 possible test documents, 11,329 have
been skipped. Details of what documents were skipped in
the creation of this collection are available from David Lewis
(lewis@research.att.com).

5.3 TREC-3

This collection, once again from the TREC disks 1–3, was used
in the routing task in the third Text REtrieval Conference (TREC-
3) [12]. The training collection contains all documentson TREC
disks 1 and 2, whereas the test collection is made up of all the
document contained in disk 3. There are a total of 741,856
training documents and 336,310 test documents. Fifty TREC
topics, numbered 101–150 are used as individual classes in this
collection [12].

Even though these TREC topics are long user-queries which
contain many useful words for text filtering, we again emphasize
that we do not use the topic texts in either of our systems. The
relevance judgments for these topics are also available with
the TREC data. A summary of the collections used in our
experiments is shown in Table 2.

5.4 Preprocessing

In our experiments, we used the entire Reuters-21578 and AP-
Body collections for training and testing. Unfortunately, it
would have taken a very long time to run AdaBoost had we
used the entire TREC collection. We therefore used a subset
of the training collection as a training set. We selected the top
10;000 documents retrieved from the training collection by a
query learned using Rocchio’s method (following the idea of
query-zoning as in [36]). In addition, we added all relevant
documents not retrieved by the above procedure to the training
set. We also applied the same procedure to the collection of
test documents. The classifier built by AdaBoost was tested
on all the relevant documents in the test collection and only
on the the top 5; 000 non-relevant test documents that were re-
trieved by Rocchio’s query, the same query used for obtaining a
sample of the training collection. Since Rocchio’s method was
used as the means of sub-sampling both the training and test
collections, these sub-sampled collections include many of non-
relevant documents that are relatively difficult to classify. We
therefore believe that the results obtained on the sub-sampled
datasets are a good estimate of the performance of the classi-
fiers. But it is also true that such sampling of the test collection
automatically rejects a large number of non-relevant documents
from the pool of documents to be classified by the AdaBoost
classifier. These documents can potentially be misclassified and
can possibly yield results poorer than the results reported in this
study for the AdaBoost algorithm for the TREC-3 task.



Utility Number of Min. Pos. Max. Pos. Train Set Test Set
Dataset Checked Tasks (Train) (Train) Size Size
Reuters-21578 Err, Util-1, Util-2 90 1 2877 9,603 3,299
AP-Body Err, Util-1, Util-2 20 88 2901 142,791 66,992
TREC-3 Err, Util-1, Util-2 50 31 803 741,856 336,310

Table 2: Summary of datasets used in the experiments.

6 Experiments and Results

This section discusses our experiments and results.

6.1 AdaBoost compared to Sleeping Experts

We first give experimental results which show that our adapta-
tion of AdaBoost for text filtering achieves better results than,
Sleeping-Experts, another effective algorithm for text filtering
studied recently by Cohen and Singer in [8]. We compare
the performance of AdaBoost and Sleeping-Experts on the AP-
Body and the Reuters-21578 tasks. Figure 2 shows the results
of this comparison. The scatter plot on the left hand side of
Figure 2 show the error-difference on corresponding classes be-
tween Sleeping-Expertsand AdaBoost as function of the number
of relevant documents in the training collection for the Reuters
collection. The right hand side plot is for the AP collection. A
point above the x-axis indicates that Sleeping-Experts is inferior
to AdaBoost as it makes more errors. These plots indicate that
for classes of all size (where size of a class is the number of
relevant training documents for that class), AdaBoost generally
outperforms Sleeping-Experts, often with a large margin.

6.2 Reuters-21578

Figure 3 (top row) shows similar comparative plots for the per-
formance of AdaBoost and Rocchio on Reuters-21578 dataset.
The left hand side scatter plot give the difference in error, the
middle plot shows the difference in Util-1, and the right plot
shows the difference in Util-2 between AdaBoost and Rocchio
as a function of the number of relevant training documents. As
before, point above the x-axis indicates that AdaBoost achieves
better results, whereas a point below the x-axis indicates that
for that class, Rocchio outperforms AdaBoost.

For error and Util-1, the scatter plots are “skewed” towards
the top-right corner indicating that AdaBoost is better than Roc-
chio for classes that have a large number of relevant documents
in the training collection. When we look at the raw numbers,
we find that the two classes for which AdaBoost significantly
outperforms Rocchio, earn and acq are also the classes with the
highest number of positive training documents, 2,877 and 1,650,
respectively. In general we observe that whenever a class has
a large number of relevant documents in its training set, Ada-
Boost tends to achieve lower error rates and higher utility values.
However, we observe that for Util-2, Rocchio is somewhatbetter
than AdaBoost.

6.3 AP-Body

The results for this dataset, shown in Figure 3 (middle row), are
quite parallel to the results for Reuters-21578. Out of the twenty
classes, AdaBoost is better than Rocchio in terms of Error and
Util-1 for the four largest classes. These classes are: britx,
bush, israel, japan. Each of these classes has more
than 2,000 relevant documents in its training set. However, for
Util-2 this advantage is not there. Overall, there isn’t much
difference in the performance of these two algorithms.

We also timed our algorithms for the AP-Body task. Our
current implementation of AdaBoost, which is rather non-
optimized, takes on an average 180 minutes per class to learn
a classifier. In contrast, our implementation of Rocchio, which
can also be further optimized, takes about 3 minutes per class
on an average. This difference in running time is significant
and makes the use of Rocchio’s method quite attractive even if
it comes at a slight loss of effectiveness (e.g., for big classes).

6.4 TREC-3

For the TREC task, we once again observe in Figure 3 (bottom
row) that there is no noticeable difference in the performance of
the two algorithms. We observe in the scatter plots that many
points for classes with few relevant training examples are below
the x-axis indicating that Rocchio is marginally better for these
cases. Overall, for this task as well, there is no noticeable differ-
ence between the two methods. As in the other two collections,
we observe that for TREC as well, the relative performance of
AdaBoost is weaker when evaluated using Util-2, and Rocchio’s
method is clearly better than AdaBoost for Util-2.

6.5 Analysis

In our view, one of the foremost results of this study is that a
state of the art version of Rocchio’s algorithm is quite competi-
tive with modern machine learning algorithms for text filtering.
This result contradicts the claims made in several previous stud-
ies [22, 8, 39, 15] that infer that Rocchio’s method is inferior to
state of the art machine learning algorithms.

These results show that when there is enough training data to
learn from, a principled learning algorithm (AdaBoost), which is
derived from theoretical foundations of computational learning
and is specifically designed for general classification, does learn
a better classifier than an algorithm designed to rank documents
(Rocchio) which does minimal learning.

On the contrary, when there is little data to learn from,
a strong learning algorithm like AdaBoost stands a chance of
over-fitting to the data. For this reason we would have expected
Rocchio to consistently outperform AdaBoost for small classes.
Even though, for small classes, Rocchio is quite effective at the
task it was designed for, namely ranking relevant documents
above non-relevant documents, it often fumbles in selecting a
threshold for filtering. For example, for the class nkr in Reuters-
21578, Rocchio achieves an average precision of 0.5085 which
is much better than average precision of AdaBoost (0.0018).
However, when evaluated using the utility measures, the two
algorithms have essentially the same performance indicating
that Rocchio was unable to capitalize on its superior ranking.
Similar behavior is observed for many other classes, e.g., dfl,
instal-debt, and sun-meal. This also indicates why using average
precision to evaluate text filtering is not sufficient.

Our current implementation of AdaBoost does not utilize
term weights, which are known to be crucial for most IR tasks [5]
and are the basis of good performance of Rocchio’s algorithm.
We believe that AdaBoost would benefit significantly by using
term weights, and we are currently studying ways of incorpo-
rating these weights into AdaBoost.



-10

-5

0

5

10

15

20

1 2 4 8 16 32 64 128 256 512

E
rr

or
 D

iff
er

en
ce

: R
oc

ch
io

 -
 A

da
B

oo
st

Number of Positive Examples

-40

-30

-20

-10

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256 512

U
til

-1
 D

iff
er

en
ce

: A
da

B
oo

st
 -

 R
oc

ch
io

Number of Positive Examples

-60

-50

-40

-30

-20

-10

0

10

20

30

40

1 2 4 8 16 32 64 128 256 512

U
til

-2
 D

iff
er

en
ce

: A
da

B
oo

st
 -

 R
oc

ch
io

Number of Positive Examples

-100

-50

0

50

100

150

128 256 512 1024 2048

E
rr

or
 D

iff
er

en
ce

: R
oc

ch
io

 -
 A

da
B

oo
st

Number of Positive Examples

-400

-300

-200

-100

0

100

200

300

128 256 512 1024 2048

U
til

-1
 D

iff
er

en
ce

: A
da

B
oo

st
 -

 R
oc

ch
io

Number of Positive Examples

-2000

-1500

-1000

-500

0

500

128 256 512 1024 2048

U
til

-2
 D

iff
er

en
ce

: A
da

B
oo

st
 -

 R
oc

ch
io

Number of Positive Examples

-40

-20

0

20

40

60

80

100

32 64 128 256 512

E
rr

or
 D

iff
er

en
ce

: R
oc

ch
io

 -
 A

da
B

oo
st

Number of Positive Examples

-100

-50

0

50

100

150

200

32 64 128 256 512

U
til

-1
 D

iff
er

en
ce

: A
da

B
oo

st
 -

 R
oc

ch
io

Number of Positive Examples

-300

-250

-200

-150

-100

-50

0

50

100

150

32 64 128 256 512

U
til

-2
 D

iff
er

en
ce

: A
da

B
oo

st
 -

 R
oc

ch
io

Number of Positive Examples

Figure 3: Comparison of AdaBoost and Rocchio.

These results also show that for all tasks, filtering for Util-
2, when a relevant documents is much more important than a
non-relevant document, is a hard job. For many classes, both
the algorithms get a negative Util-2 value, indicating that they
are having troubles classifying for this measure. Apparently
Rocchio is more robust to this skew in the relative importance
of relevant documents. AdaBoost doesn’t do as well for Util-2
as it does for error and Util-1 when compared to Rocchio. We
haven’t studied this phenomenon in greater details yet, but we
suspect that the high importance of relevant documents is forc-
ing AdaBoost to select non-general features from the relevant
documents, which results in over-fitting of the classifier to the
training relevant documents.

The poor performance of AdaBoost on TREC can possibly
be attributed to the sampling used to train the algorithm for
this task (see Section 5.4). When AdaBoost is trained using a
small set of training documents, it is unable to learn the global
occurrence pattern for words. Rocchio, on the other hand, uses
this information as the idf-factor (Table 1) in term weights. Due
to such sampling, AdaBoost tends to over-emphasize common
terms that happen to occur in the relevant documents in the
sample of documents it is trained on. Had it been trained on the
entire collections, this wouldn’t be a problem, and the results
should have been better.

7 Conclusions

We have developed two effective algorithms for text filtering.
Both algorithms, the first, AdaBoost, based on recent devel-
opments in the Machine Learning community, and the second
based on Rocchio’s method which was developed in the Infor-
mation Retrieval community, are quite competitive. We find that
AdaBoost is significantly better than Sleeping-Experts, another
effective text filtering algorithms available from prior research.

AdaBoost is also better than Rocchio if there is a large number
(hundreds or even thousands) of relevant documents to learn
from. Otherwise, there is no noticeable difference between the
performance of the two algorithms. It is not clear how often
we get a large number of relevant documents in an operational
text filtering system. From our current experiments, Rocchio is
significantly faster than AdaBoost. Thus, it seems that classi-
fiers based on Rocchio’s method are and would be viable tools
in large scale filtering systems. In order to make AdaBoost
more attractive for large problems with sparse relevant docu-
ments, algorithmic improvements that will significantly reduce
the computation time should be sought.
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