
Pivoted Document Length NormalizationAmit Singhal�, Chris Buckley, Mandar MitraDepartment of Computer Science, Cornell University, Ithaca, NY 14853fsinghal, chrisb, mitrag@cs.cornell.eduAbstractAutomatic information retrieval systems have to deal withdocuments of varying lengths in a text collection. Docu-ment length normalization is used to fairly retrieve docu-ments of all lengths. In this study, we observe that a nor-malization scheme that retrieves documents of all lengthswith similar chances as their likelihood of relevance willoutperform another scheme which retrieves documents withchances very di�erent from their likelihood of relevance. Weshow that the retrieval probabilities for a particular normal-ization method deviate systematically from the relevanceprobabilities across di�erent collections. We present pivotednormalization, a technique that can be used to modify anynormalization function thereby reducing the gap betweenthe relevance and the retrieval probabilities. Training piv-oted normalization on one collection, we can successfully useit on other (new) text collections, yielding a robust, collec-tion independent normalization technique. We use the ideaof pivoting with the well known cosine normalization func-tion. We point out some shortcomings of the cosine func-tion and present two new normalization functions | pivotedunique normalization and pivoted byte size normalization.1 BackgroundTerm weighting is an important aspect of modern text re-trieval systems. [2] Terms are words, phrases, or any otherindexing units used to identify the contents of a text. Sincedi�erent terms have di�erent importance in a text, an im-portance indicator | the term weight | is associated withevery term. [8] Three main components that a�ect the im-portance of a term in a text are the term frequency factor(tf ), the inverse document frequency factor (idf ), and doc-ument length normalization. [9]�This study was supported in part by the National Science Foun-dation under grant IRI-9300124.

Document length normalization of term weights is usedto remove the advantage that the long documents have inretrieval over the short documents. Two main reasons thatnecessitate the use of normalization in term weights are:1. Higher term frequencies: Long documents usuallyuse the same terms repeatedly. As a result, the termfrequency factors may be large for long documents, in-creasing the average contribution of its terms towardsthe query{document similarity.2. More terms: Long documents also have numerousdi�erent terms. This increases the number of matchesbetween a query and a long document, increasing thequery{document similarity, and the chances of retrievalof long documents in preference over shorter docu-ments.Document length normalization is a way of penalizing theterm weights for a document in accordance with its length.Various normalization techniques are used in informationretrieval systems. Following is a review of some commonlyused normalization techniques:� Cosine Normalization: Cosine normalization is themost commonly used normalization technique in thevector space model. [10] The cosine normalization fac-tor is computed aspw12 +w22 + : : :+wt2where wi is the raw tf�idf weight for a term. [7, 8]Cosine normalization attacks both the reasons for nor-malization (higher tfs and more terms) in one step.Higher individual term frequencies increase individualwi values, increasing the penalty on the term weights.Also, if a document has more terms, the number ofindividual weights in the cosine factor (t in the aboveformula) increases, yielding a higher normalization fac-tor.� Maximum tf Normalization: Another popular nor-malization technique is normalization of individual tfweights for a document by the maximum tf in thedocument. The Smart system's augmented tf factor(0:5 + 0:5 � tfmax tf ), and the tf weights used in theINQUERY system (0:4+0:6� tfmax tf ) are examples ofsuch normalization. [8, 13] By restricting the tf factors
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Retrieval using Cosine compared to Relevance

(a) (b) (c)Figure 1: Probability that a relevant/retrieved document is from a bin, plotted against the median bin length. The analysis for the relevantdocuments is shown in (a), (b) shows the analysis for documents retrieved using cosine normalization, and (c) compares the smooth plots for (a)and (b).to a maximum value of 1:0, this technique only com-pensates for the �rst reason (higher tfs) for normaliza-tion. When used without any correction for the sec-ond reason (more terms) this turns out to be a \weak"form of normalization and favors the retrieval of longdocuments. [1]� Byte Length Normalization: More recently, a lengthnormalization scheme based on the byte size of docu-ments has been used in the Okapi system. [6] Thisnormalization factor attacks both the reasons for nor-malization in one shot.This study shows that better retrieval e�ectiveness re-sults when a normalization strategy retrieves documents withchances similar to their probability of relevance. We presenta technique to analyze these probabilities. Based on obser-vations from this analysis, we present a novel normalizationapproach | pivoted normalization. We show that pivotednormalization yields substantial improvements in retrievale�ectiveness.The rest of this study is organized as follows. Sectiontwo introduces pivoted normalization. Section three showshow the cosine function can be pivoted to obtain signi�cantimprovements in retrieval e�ectiveness. Section four furtheranalyzes the cosine function. Section �ve introduces pivotedunique normalization, another possible function for docu-ment length normalization. Section six introduces pivotedbyte size normalization for use in degraded text collections.Section seven concludes the study.2 ApproachFor a given document collection and a set of test queries,we analyze the likelihood of relevance/retrieval for docu-ments of all lengths, and plot these likelihoods against thedocument length to obtain a \relevance pattern" and a \re-trieval pattern". In general, a normalization scheme underwhich the probability of retrieval for the documents of agiven length is very close to the probability of �nding a rel-evant document of that length should perform better thananother scheme which retrieves documents with very di�er-ent chances from their relevance probability. The aim is,then, to learn how the retrieval pattern deviates from therelevance pattern for a given normalization function. Un-der the hypothesis that this deviation is systematic acrossdi�erent queries and di�erent document collections, we can

propose collection independent techniques to reduce this de-viation.2.1 Likelihood of Relevance/RetrievalTo design length normalization functions that attempt tomatch the likelihood of retrieval to the likelihood of rele-vance, we need a way to estimate these likelihoods. Wedo this by ordering the documents in a collection by theirlengths, and dividing them into several equal sized \bins".We can then compute the probability of a randomly selectedrelevant/retrieved document belonging to a certain bin. Forexample, to do such an analysis for �fty TREC [4] queries(151{200) and 741,856 TREC documents (from disks oneand two), we sorted the documents in order of increasingbyte-length. We divided this sorted list into bins of onethousand documents each, yielding 742 di�erent bins: the�rst 741 bins containing one thousand documents each, andthe last bin containing the longest 856 documents. We se-lected the median document length in each bin to representthe bin on the graphs used in later analysis.We took the 9,805 hquery, relevant-documenti pairs forthe �fty queries, and counted how many pairs had their doc-ument from the ith bin. We then computed the probabilitythat a randomly selected relevant document belongs to theith bin | the ratio of the number of pairs that have theirdocument from the ith bin, and the total number of pairs(9,805). In terms of conditional probability, given a doc-ument D, this ratio for the ith bin can be represented byP (D 2 Bini j D is Relevant). Similarly, by retrieving thetop one thousand documents for each query (yielding 50,000hquery, retrieved-documenti pairs), and repeating the aboveanalysis for a bin, we get the conditional probability of re-trieval, P (D 2 Bini j D is Retrieved), for a particular nor-malization function.Figures 1(a) and 1(b) show the plots of the probabili-ties obtained from the above analysis plotted against themedian document length in a bin. Smart's lnc.ltc retrieval,which is based upon cosine normalization, was used to getthe retrieval probabilities. [3] In Figure 1(c), the smoothedplots1 for the relevance and the retrieval probabilities are1We generated smooth plots for various �gures by representing asequence of 24 bins by a single point and connecting these points bya curve. The 742 bins yielded 31 di�erent points where the last pointrepresented the longest 22 bins (742 = 30� 24 + 1� 22). The repre-sentative point for a group of bins was obtained by taking averages of
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Figure 2: Pivoted Normalization. The normalization factor for documents for which P(retrieval) > P(relevance) is increased, whereas thenormalization factor for documents for which P(retrieval) < P(relevance) is decreased.graphed together. This comparison reveals important infor-mation about the length normalization properties of a termweighting strategy. For example, we can observe from thesmoothed plots that lnc.ltc retrieval has a tendency to re-trieve short documents with a higher probability than theirprobability of relevance; it is less likely to retrieve longerdocuments as compared to the likelihood of their relevance.This observation reinforces the long held belief that cosinenormalization tends to favor short documents in retrieval .When using lnc.ltc retrieval, we would like to (somehow)promote the retrieval of longer documents, and we wouldlike to retrieve fewer short documents.2.2 The \Pivoted" Normalization SchemeThe higher the value of the normalization factor for a docu-ment is, the lower are the chances of retrieval for that docu-ment. In e�ect, the probability of retrieval of a document isinversely related to the normalization factor used in the termweight estimation for that document. This relationship sug-gests that to boost the chances of retrieval for documentsof a certain length, we should lower the value of the nor-malization factor for those documents, and vice-versa. Thepivoted normalization scheme is based on this principle.The basic idea of pivoted normalization is illustrated inFigure 2. Using a normalization function (like cosine, orbyte-size), a set of documents is initially retrieved. As shownin Figure 1(c), the retrieval and the relevance curves areplotted. The point where these two curves cross each otheris called the pivot . The documents on one side of the pivotare generally retrieved with a higher probability than theirrelevance probability, and the documents on the other sideof the pivot are retrieved with a lower probability than theirprobability of relevance. The normalization function cannow be \pivoted" at the pivot and \tilted" to increase thevalue of the normalization factor, as compared to the origi-nal normalization factor, on one side of the pivot. This alsodecreases the value of the normalization factor on the otherside of the pivot. The amount of \tilting" needed becomes aparameter of the weighting scheme, and is called the slope.With such pivoting and tilting, the pivoted normalizationfactor is represented by the equation for a line of gradientboth the median lengths, and the probabilities of relevance/retrievalfor the 24 (22 for the last point) consecutive bins.

slope that intersects the line of unit gradient at the pointpivot .pivoted normalization =(1:0� slope)� pivot+ slope� old normalization (1)If this deviation of the retrieval pattern from the relevancepattern is systematic across collections for a normalizationfunction, the pivot and the slope values learned from one col-lection can be used e�ectively on another collection. See [12]for a more detailed description of this technique.2.3 Removing One ParameterUsing pivoted normalization, the new weight of a documentterm can be written as:tf � idf weight(1:0� slope)� pivot + slope � old normalizationIf we multiply every document term weight by a constant,the relative ranking of the documents under inner-productsimilarity measurement remains unchanged as individual doc-ument similarities are simply scaled by the constant. [9] Mul-tiplying each weight by the constant (1:0 � slope) � pivot,we obtain the following term weighting formula:tf � idf weight � (1:0� slope)� pivot(1:0� slope)� pivot + slope � old normalizationor tf � idf weight1 + slope(1:0�slope)�pivot � old normalizationWe observe that the form of the pivoted normalizationfunction is 1 + c � old normalization, where the constantc equals slope(1:0�slope)�pivot . If the pivot value in an optimalconstant c is changed to pivot0, the slope value can be mod-i�ed to slope0 to get back the optimal constant. If we �x thepivot value at some collection speci�c value, like the aver-age old normalization factor, it is still possible to obtain anoptimal slope value by training. Therefore, the number ofparameters (that we need to train for) is reduced to just oneinstead of two.



Pivoted Cosine NormalizationCosine Slope0.60 0.65 0.70 0.75 0.806,526 6,342 6,458 6,574 6,629 6,6710.2840 0.3024 0.3097 0.3144 0.3171 0.3162Improvement + 6.5% + 9.0% +10.7% +11.7% +11.3%Table 1: Estimation of a good slope in pivoted cosine normalization. The pivot is set to the average cosine normalization factor (13.36) forTREC disks one and two (741,856 documents). TREC queries 151{200 were used in these experiments. Each entry shows the total number ofrelevant documents retrieved (out of 9,805) for all �fty queries, the non-interpolated average precision, and the improvement in average precisionover using cosine normalization. Pivoted Cosine NormalizationCosine Slope0.60 0.65 0.70 0.75 0.8028,484 30,270 30,389 30,407 30,314 30,1190.3063 0.3405 0.3427 0.3427 0.3411 0.3375Improvement +11.2% +11.9% +11.9% +11.4% +10.2%Table 2: Estimation of a good slope in pivoted cosine normalization for TREC queries 1{150. Each entry shows the total number of relevantdocuments retrieved (out of 46,555) for all 150 queries, the non-interpolated average precision, and the improvement in average precision overcosine normalization.
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(a) (b)Figure 3: Pivoted cosine normalization: comparison of the retrieval pattern to the relevance pattern (a), and same comparison for cosinenormalization (b).Selecting the average old normalization factor as thepivot has a nice interpretation. If instead of multiplyingevery term weight by (1:0 � slope) � pivot in Equation 1,we multiply every weight by the constant pivot (which hasthe value average old normalization), the �nal normalizationfactor reduces to:(1:0� slope) + slope � old normalizationaverage old normalizationFrom this expression, similar to Robertson's notion [5], wecan say that an average length document is of \appropriatelength" and its weights should remain unchanged, i.e., itshould get unit (or no) normalization. Also, the slope canbe interpreted as our \belief in length".3 Pivoted Cosine NormalizationSince cosine normalization is most commonly used in thevector space model, it is natural to test pivoting with the
cosine function �rst. In our studies with the TREC collec-tion [4], a tf factor of 1 + log(tf ) works well for this col-lection. Also, the idf factor is only used in the query termweights and not in the document term weights. [3, 11] Fixingthe pivot value at the average cosine factor for 1 + log(tf )weighted documents for TREC disks one and two (average =13.36), we retrospectively learn the value of a good slope forTREC queries 151-200 (see Table 1). Substantial improve-ments over cosine normalization | 9{12% improvement inaverage precision | are obtained using pivoted cosine nor-malization.Figure 3(a) compares the retrieval pattern for pivotedcosine normalization to the relevance pattern. For compar-ison with cosine normalization, Figure 1(c) has been repro-duced here as Figure 3(b). We observe that the curve forthe retrieval probability using pivoted cosine normalizationis much closer to the curve for the relevance probability,as compared to the curve for retrieval using cosine normal-ization. This indicates that pivoted cosine normalization
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Retrieval

AP (196 Queries)

DOE (80 Queries)

FR (111 Queries)

WSJ (200 Queries)

ZF (122 Queries)

TREC (200 Queries)

Relevance Cosine Pivoted Cosine

0.4000 0.4173 (+ 4.3%)

0.3046 0.3211 (+ 5.4%)

0.3357 (+11.6%)

0.2785 (+20.3%)

0.3525

0.2829 0.3441 (+21.7%)

0.2314

0.3899 (+10.6%)

0.3007Figure 4: Comparison of cosine and pivoted cosine normalization for six di�erent collections. Use of cosine normalization invariably favorsshort documents in retrieval. This problem is reduced by the use of pivoted cosine normalization. (Average precision values for retrieval usingthe cosine and the pivoted cosine function are shown in their respective plots.)



retrieves documents of all lengths with chances much closerto their likelihood of relevance. This observation along withthe 11.7% improvement over cosine normalization stronglysupports our hypothesis that schemes that retrieve docu-ments of di�erent lengths with chances similar to their like-lihood of relevance will have a higher retrieval e�ectiveness.To test the robustness of pivoted cosine normalization, wetested it on another 150 TREC queries (1{150). The train-ing for slope for TREC queries 1{150 is shown in Table 2.Once again we see that pivoted cosine normalization yields10{12% improvement over cosine normalization.As relevance judgments are not available in an adhocquerying environment, to observe the variability in a goodslope value across query sets, we also tested the optimalslope value obtained from a set of training queries (TRECqueries 1{150) on a set of test queries (TREC queries 151{200). We observe from Table 2 that the best slope value forqueries 1{150 is 0.70. If we use this slope value for queries151{200, we would still achieve \near best" performance |10.7% improvement in place of 11.7% (see Table 1). Thisindicates that it is possible to learn the slope value on oneset of queries and successfully use it on another.To test our hypothesis that the deviation of the retrievalpattern from the relevance pattern for a given normaliza-tion function is systematic across di�erent query sets anddi�erent document collections, we studied these patterns forcosine normalization on six di�erent sub-collections of theTREC collection. [4] Figure 4 shows the relevance patternsand the retrieval patterns (for queries that have any relevantdocument in a collection) obtained using cosine normaliza-tion and pivoted cosine normalization for various collections.We observe that, despite the widely varying relevance pat-terns for di�erent collections, for cosine normalization, thedeviation of the retrieval pattern from the relevance patternis indeed systematic. For all collections, use of cosine nor-malization retrieves short documents with chances higherthan their likelihood of relevance, and retrieves long docu-ments with chances lower than their likelihood of relevance.Using pivoted cosine normalization reduces the gap betweenthe retrieval and the relevance pattern for all the collections.Moreover, the slope value learned from one collection is nearoptimal | within 5% of the best slope value | for all thecollections. Using a slope of 0.70 across collections, impor-tant improvements (+4.3% to +21.7%) are achieved on allthe collections.4 Analysis of the Cosine FunctionOn close observation of Figure 1(b) we notice that when co-sine normalization is used, the probability of retrieval for thedocuments in the last few bins (the \extremely" long docu-ments) is substantially higher than the rest of the collection.The last few bins contain documents that are longer than20,000 bytes, more than six times the average document sizefor the entire collection. This favoring of extremely long ismore prevalent when pivoted cosine normalization is used| the last few bins in Figure 3(a) have very high retrievalprobabilities.This favoring is further examined in Figure 5 which showsa magni�ed view of the long end of the document lengthspectrum, the last twenty bins. We notice that using co-sine normalization, the retrieval probabilities for extremelylong documents are marginally greater than their probabil-ity of relevance, i.e., cosine normalization retrieves thesedocuments with \slightly higher" chances than we wouldlike. When we use pivoted cosine normalization, which aims
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Figure 5: Probabilities in the last twenty bins containing the longest19,856 documents (last bin has only 856 documents) from the collec-tion. We notice that pivoted cosine normalization favors the retrievalof extremely long documents.at favoring long documents, we end up \strongly favoring"extremely long documents. This e�ect causes excessive re-trieval of such (possibly non-relevant) documents, hurtingthe retrieval e�ectiveness.On deeper analysis of the cosine function, we observethat if all the terms appear just once in a document (tf = 1),the cosine normalization factor for the document is (individ-ual term weights are 1 + log(tf ) = 1, and we are not usingthe idf factor on documents):p12 + 12 + : : : 12 =p# of unique termsIn reality, some terms occur more than once in a document,and the cosine factor can be higher than p# of unique terms.In practice, however, the cosine normalization factors fordocuments are very close to the function p# of unique termsdue to the following two facts:� It is well known that the majority of the terms in adocument occur only once. So there are only a fewterms that have tf > 1.� As we use 1 + log(tf ) as the tf factor, for most of theterms with tf > 1, the tf factors are not too large. Dueto the \dampening e�ect" of the log function, most ofthe tf factors, in practice, are close to 1.0.When we studied the variation of the cosine factor for TRECdocuments in relation to the number of unique terms in adocument, we observed that the cosine factor actually doesvary like the function # of unique terms0:6.Further, with dampened tf factors, even with high rawtf values in individual documents, document retrieval is notstrongly a�ected by the term frequency factors. The re-trieval of documents is generally governed by the numberof matches to the query. Assuming that the presence of aterm is completely independent of the presence/absence ofanother term (the binary independence assumption made bymost retrieval models), the probability of a match betweena query and a document increases linearly in the numberof di�erent terms in a document2. Therefore a good length2Suppose the vocabulary size is T , and document D has k di�erentterms. The probability that a randomly selected query term belongsto document D is kT . This probability increases linearly in k.



Pivoted Unique NormalizationCosine Slope0.15 0.20 0.25 0.306,526 6,688 6,841 6,864 6,8520.2840 0.3268 0.3355 0.3361 0.3318Improvement +15.1% +18.1% +18.3% +16.8%Improvementover best (0.3171) + 3.1% + 5.8% + 6.0% + 4.6%Pivoted CosineTable 3: Estimation of a good slope in pivoted unique normalization for TREC queries 151{200. Each entry shows the total number of relevantdocuments retrieved (out of 9,805) for all �fty queries, and the non-interpolated average precision. The improvements in average precision overcosine normalization and over pivoted cosine normalization are also shown. The pivot value was set to 107.89, which is the average number ofunique terms in a document for TREC disks one and two.
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(a) (b) (c)Figure 6: Pivoted unique normalization compared to pivoted cosine normalization.normalization function should also vary linearly with thenumber of unique terms in a document.As documents grow longer, the cosine function, with itsvariation as # of unique terms0:6, becomes substantiallyweaker than a linear function in # of unique terms. Forthis reason, we observe that the use of cosine function canfavor extremely long documents in retrieval. This problemis aggravated with the use of pivoted cosine normalizationwhich further aids the retrieval of long documents. We pro-pose that a function linear in the number of unique termsin a document be used for normalization.5 Pivoted Unique NormalizationBased on the above observations, we use the number ofunique terms in a document as the normalization function,and to match the likelihoods of relevance and retrieval, weuse pivoting of this function to get the pivoted unique nor-malization function:pivoted unique normalization =(1:0� slope)� pivot + slope �# of unique termsSince the pivoted unique normalization factor only com-pensates for the second e�ect | more terms in long docu-ments | that necessitates (the presence of) normalization,we still need to compensate for the �rst e�ect | highertfs in long documents (see Section 1). Normalization of tfweights by maximum tf in a document can possibly be used
to remove this e�ect, but we believe that max tf is not anoptimal normalization scheme to �x the higher tfs problem.For example, if a query term occurs �ve times in documentD1 in which all other terms occur just once, then D1 is pos-sibly more interesting than another document D2 in whichthe same query term occurs �ve times as well, but all otherterms also occur �ve times each. If max tf is used for nor-malization, D1 has no advantage over D2 since the queryterm will have the same weight in both the documents.We believe that average term frequency in a documentis a better representative of the \verbosity" of a document.Judging term importance by term frequencies, if all termswere equally important in a document, each should occurthe same number of times in that document with tf =average tf . For this reason, we would like a term that hastf = average tf to have unit importance in a document. Weuse the function: 1 + log(tf )1 + log(average tf )as the term frequency factor for a term in a document. In ex-periments comparing average term frequency based normal-ization to maximum term frequency based normalization3(in conjunction with pivoted unique normalization with ret-rospectively trained slope value), we observed that averageterm frequency based normalization performed 5.7% betterfor 200 TREC queries on the entire TREC collection.3We used the function 0:4+0:6� 1+log(tf )1+log(max tf ) , a function similarto the well tested and e�ective function of the INQUERY system. [1]



Pivoted Byte Size NormalizationCosine Slope0.25 0.30 0.35 0.406,526 6,634 6,678 6,689 6,5700.2840 0.3258 0.3277 0.3261 0.3088Improvement +14.7% +15.4% +14.8% +8.7%Improvementover best (0.3361) - 3.1% - 2.5% - 3.0% -8.1%Pivoted UniqueTable 4: Estimation of a good slope in pivoted byte size normalization for TREC queries 151{200. Each entry shows the total number of relevantdocuments retrieved (out of 9,805) for all �fty queries, and the non-interpolated average precision. The improvements in average precision overcosine normalization and over pivoted unique normalization are also shown. The pivot value was set to 2,730, which is the average number ofindexable bytes in a document for TREC disks one and two.Based on this tf factor (which we call the L factor inSmart's term weight triple notation [8]) and pivoted uniquenormalization (which we call the u normalization factor), weobtain the �nal weighting strategy of the documents (calledLnu weighting in Smart):1+log(tf )1+log(average tf )(1:0� slope)� pivot + slope �# of unique termsOnce again, we can use the average number of unique termsin a document (computed across the entire collection) as thepivot, and train for a good slope value.The results of switching to pivoted unique normaliza-tion from pivoted cosine normalization for TREC queries151{200 are listed in Table 3. We observe that the best piv-oted unique normalization yields another 6% improvementover the best pivoted cosine normalization, resulting in anoverall 18.3% improvement over cosine normalization. Adeeper analysis of retrieval using Lnu weighted documents(Figure 6(a)) reveals that in comparison to pivoted cosinenormalization (Figure 6(b)), the probability of retrieval us-ing pivoted unique normalization is, in fact, even closer tothe probability of relevance for documents of all lengths. Wealso notice in Figure 6(c) that the advantage that very longdocuments had by the use of pivoted cosine normalization isremoved by using pivoted unique normalization. The addi-tional 6% improvement in Table 3 shows that as the retrievalprobabilities come closer to the relevance probabilities, re-trieval e�ectiveness increases. The closer the two curves are,the higher is the retrieval e�ectiveness.To verify the general applicability of pivoted unique nor-malization schemes, we also tested it on various sub-collectionsof TREC. Substantial improvements over cosine normaliza-tion are obtained for all the collections. Also, the slope valueis very stable, i.e., the changes in retrieval e�ectiveness withminor deviations in slope (from the optimal slope value) arevery small for all the collections. A constant slope valueof 0.20 was e�ective across collections. These observationsare reassuring in terms of the general applicability of thepivoted normalization schemes.6 Degraded Text CollectionsWhen large text collections are constructed by electronicallyscanning the documents and using optical character recog-nition (OCR), the resulting text is usually degraded becauseof faulty recognition by the OCR process. Term weightingstrategies that are e�ective for correct text collections might

not be e�ective for degraded text collections. For example,if we use pivoted unique normalization in a degraded textcollection, the normalization factor for documents will bea�ected by the poor quality of the input text (usually thenumber of unique terms in a document will be arti�ciallyhigh because di�erent occurrences of a term can yield dif-ferent unique terms in the degraded text).Term weighting strategies that are not a�ected by theerrors in the input text are needed for degraded text col-lections. [11] For correct collections, we have used the co-sine factor and the number of unique terms to represent adocument's length. In a degraded text collection, lengthmeasures that undergo little distortion in the OCR processshould be used for document length normalization. Sincelonger documents have more words and thus a greater num-ber of bytes, functions of the number of bytes in a documentcould possibly be used for normalization. The Okapi sys-tem successfully uses the document size (in bytes) for lengthnormalization of (correct) documents. [5] In OCR environ-ments, the byte sizes of the documents are less distorted,and this distortion is much more uniform across documents.For this reason, byte sizes of documents should provide amore stable normalization function. [11]We use byte size of a document to denote the document'slength in the pivoted normalization function. Using the av-erage byte size as the pivot, we obtain the following normal-ization function:pivoted byte size normalization =(1� slope)� average byte size + slope � byte sizeSince the byte size of a document increases with the multipleoccurrences of the same word, as well as with the presenceof di�erent words, this normalization function compensatesfor both the reasons that necessitate normalization (see Sec-tion 1). Using this normalization function, which we denoteby the letter b in Smart's notation, and 1+ log(tf ) weightedterm frequency factors, we tested various slope values onthe correct TREC disks one and two, using TREC queries151{200. The results of using lnb weighted documents andltb weighted queries are shown in Table 4.Table 4 shows that pivoted byte size normalization alsoyields important improvements over cosine normalization.It is slightly worse than using the best pivoted unique nor-malization on the correct text. When we compare the prob-ability of retrieval using the pivoted byte size normalizationto the probability of relevance for documents, we observethat pivoted byte size normalization retrieves very long doc-
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