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ABSTRACT

Information retrieval from audio data is sharply dif-
ferent from information retrieval from text, not sim-
ply because speech recognition errors affect retrieval
effectiveness, but more fundamentally because of the
linear nature of speech, and of the differences in hu-
man capabilities for processing speech versus text.
We describe SCAN, a prototype speech retrieval and
browsing system that addresses these challenges of
speech retrieval in an integrated way. On the retrieval
side, we use novel document expansion techniques
to improve retrieval from automatic transcription to a
level competitive with retrieval from human transcrip-
tion. Given these retrieval results, our graphical user
interface, based on the novel WYSIAWYH (“What
you see is almost what you hear”) paradigm, infers text
formatting such as paragraph boundaries and high-
lighted words from acoustic information and informa-
tion retrieval term scores to help users navigate the er-
rorful automatic transcription. This interface supports
information extraction and relevance ranking demon-
strably better than simple speech-alone interfaces, ac-
cording to results of empirical studies.

1. INTRODUCTION

To date, user interfaces for both text and speech re-
trieval systems have focussed on search, where the
goal is simply to identify a ranked set of text or au-
dio documents relevant to the user's query. In text it
may be that, for more detailed information seeking,
users can easily scan and browse the retrieved texts to
identify relevant regions. In a speech corpus, however,
it is apparent that user interfaces providing only (au-
dio) document retrieval are insufficient. For instance,
a story in the NIST Broadcast News corpus can be as
long as 25 minutes. Given the sequential nature of
speech, it is extremely laborious to scan through multi-
ple long stories to obtain an overview of their contents,
or to identify specific information of direct relevance
within them. In addition to searching for relevant
documents, interfaces for accessing speech archives
therefore also need to support local navigation within
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such documents. Based on two user studies to iden-
tify current user problems and strategies for searching
speech archives, we propose a new paradigm for mul-
timodal user interfaces to speech data, and describe
empirical evaluation of a system built according to this
paradigm.

1.1. Initial Studies

To identify local browsing needs we conducted a se-
ries of empirical studies. First we studied heavy users
of a current major speech archiving technology, voice-
mail, to discover their needs and problems [7, 19].
Next, we compared two very simple speech browsers
empirically, to understand user behavior in informa-
tion retrieval tasks that involved finding specific in-
formation and summarizing larger chunks of informa-
tion [20, 10]. From our experienced audio brows-
ing/retrieval users, we identified primary needs and
difficulties with current technology. We learned that
scanning, that is, navigating to the correct message or
relevant part of the message, andinformation extrac-
tion, accessing specific facts from within the message
presented major difficulties for users. 72% of users
usually took notes, either full-transcription or simpler
message indexing, abstracting only key points to be
used later to locate the original message in the archive.
In our laboratory studies, we found that subjects expe-
rienced serious problems with local navigation, even
in a very small speech archive of short voicemail mes-
sages. They could learn the global structure of the
archive but had trouble remembering individual mes-
sage contents. Information extraction tasks were ex-
tremely hard, particularly when multiple facts needed
retrieving, and users repeatedly replayed material they
had just heard, suggesting problems with remember-
ing local message structure.

1.2. What You See Is (Almost) What You Hear

As a result of these findings, we proposed a new
paradigm for speech retrieval interfaces: ”what you
see is (almost) what you hear” (WYSIAWYH) [18].
This is a multimodal approach (Figure 1) based on the
notion of providing avisual analogto the underlying
speech.



Figure 1: WYSIAWYH Browser

We use text formatting conventions (such as
headers and paragraphs) to take advantage of well-
understood text conventions and provide useful local
context for speech browsing. The interface presents
two types of visual information: an abstract overview
and a formatted transcript. This visual information
provides methods for users to index into the original
speech documents. By depicting the abstract structure
of an audio document in the overview, and by provid-
ing a formatted transcription, we hoped to make visual
scanning and information extraction more effective,
addressing the problems of local navigation identified
in our user studies. We implemented this paradigm in
a multimodal user interface to SCAN, described be-
low, and evaluated our results in a comparison with a
simple speech interface.

2. THE SCAN SYSTEM

SCAN operates by segmenting speech documents into
paratones, or audio paragraphs, using acoustic infor-
mation, classifying the recording conditions for each
segment (narrowband or other) and employing auto-

matic speech recognition (ASR) on each. We combine
ASR results for each paratone so that for each audio
document we have its corresponding (errorful) tran-
scription. Terms in each transcript are then indexed for
subsequent retrieval by an adaptation of the SMART
information retrieval system [13].

2.1. Paratone Detection

The news stories in our corpus may be up to 25
minutes long. To segment these for our speech rec-
ognizer, as well as for our end users, we trained a
CART [1] classifier to recognize intonational phrase
boundaries, which can then be merged into intona-
tional paragraphs, orparatones[6, 5]. The clas-
sifier was trained on the Boston Directions Corpus
(BDC) [4], which had previously been hand labeled
for intonational boundaries using the ToBI labeling
conventions [15, 12]. Acoustic features which best
predicted intonational boundaries in this data included
fundamental frequency (F0), RMS energy, and auto-
correlation peaks, and were derived from the Entropic
WAVES pitch-trackerget f0. The two best classi-
fiers on the BDC corpus performed at precision/recall



rates of 0.92/0.74 and 0.95/0.71 on a hand-labeled test
set from the TREC SDR corpus (230 sec of an NPR
broadcast containing 88 intonational phrases).

The classifier is used to segment the speech stream
for the recognizer into ' chunks' around 20 msec long,
by locating the closest intonational phrase boundary
to this limit. We believe this is preferable to using
fixed-size units, which can begin or end within words,
or break apart words which should be considered to-
gether in the language model. Currently, these same
units are used for visual browsing and play-back in
the SCAN GUI. Better choice of boundaries for these
paratones can be made using simple pausal duration
information, for a given speaker; that is, longer pauses
are reliably correlated with topic beginnings [2, 3, 4].
However, it is difficult to find topic boundaries reliably
across speakers, due to differences in speaking rate.

2.2. Classifying Channel Conditions

The intonational paratones classified by CART are
then passed to a simple Gaussian-mixture-based clas-
sifier that divides them into wide-band or narrow-band
speech. The TREC SDR data is labeled more specifi-
cally as to recording conditions, including information
about background noise and music; however, previous
experiments showed that a simple wide- or narrow-
band distinctionperformed as well for recognition pur-
poses as a more complex set of distinctions.

2.3. The Speech Recognizer

Our recognizer uses a standard time-synchronous
beam search algorithm operating on aweighted finite-
state transducer[11, 9] representing the context-
dependency, lexical and language model constraints
and statistics of the recognition task. Context-
dependent phones are modeled with continuous den-
sity, three-state, left-to-right hidden Markov models.
State densities are modeled by mixtures of up to 12
diagonal-covariance Gaussians over 39-dimensional
feature vectors (first 13 mel-frequency cepstral coef-
ficients and their first and second time derivatives).

2.3.1. Lexicon

We use a 237,000 word vocabulary including all the
words in SDR98 training transcript, common words on
newswire of the same time period, and 5,000 common
acronyms.

2.3.2. Language Models

We use a two-pass recognition process. In the first
pass, we build word lattices for all the speech, using
a minimal trigram language model and a beam deter-
mined heuristically to provide word lattices of man-
ageable size. In the second pass, these word lattices
are rescored with a more detailed 4-gram language

model. The best path is extracted from the rescored
lattices. Both models are based on the Katz back-
off technique [8] and are pruned using the shrinking
method of Seymore and Rosenfeld [14].

2.3.3. ASR Performance

The performance of our recognition component on the
TREC7 test set was 32.4% word error rate (WER).
This was slightly better than the ' medium error' tran-
scriptions provided by NIST in the TREC7 compe-
tition, although considerably worse than the 24.8%
WER of the top recognizer on this test set. Despite this
handicap, our retrieval results were quite good, due to
some innovations in expanding both the queries and
the documents in our collection.

2.4. The Information Retrieval System

We use a modified version of the SMART informa-
tion retrieval system [13] to perform audio `document'
retrieval from automatic transcriptions. In SMART,
both documents and queries are represented as term-
indexed weight vectors, and documents retrieved for a
query are ranked according to the inner product of the
query and document vectors.

User queries are typically short, and enriching
such short queries with words related to the query
(query expansion) is a well-established technique for
improving retrieval effectiveness [16]. In brief, the ini-
tial user query is first used to locate some top-ranked
documents that are related to the user query, and words
that are frequent in those documents are then added to
the query.

We also performdocument expansion, to compen-
sate for some of the recognizer's mistakes, adding
words that “could have been present” to the automatic
transcription of each news story. We first take the one-
best recognition output for a given story and use that
as a query itself on a larger text news corpus. From
the documents retrieved, we identify those terms that
appear in the recognition word lattice from which our
one-best output was derived, and add the top 25% (up
to 50) new terms occurring in at least half the top 20
retrieved documents to the transcription of that story.
The process is described in detail elsewhere [16].

We tested the retrieval effectiveness of SCAN on
TREC-7 SDR track data [17]. Results show that when
retrieval is done on automatic transcriptions, average
precision is 0.4371, just 3.9% behind retrieval from
perfect transcriptions. Document expansion removes
this difference and retrieval from expanded documents
is at par with retrieval from human transcriptions, at
0.4535. Query expansion improves the retrieval ef-
fectiveness for all transcriptions. The average preci-
sion for retrieval from human transcriptions improves
to 0.5083. The gains for retrieval from expanded docu-
ments are stronger, and the average precision improves



to 0.5300 — actually surpassing retrieval from human
transcriptions (0.5083) by 4.3%.

3. THE USER INTERFACE

For each story, we make use of the (errorful) ASR tran-
scription, paratone segmentation, SMART-selected
query terms and their weightings, and SMART
relevance-ranked documents. The SCAN UI (Figure
1) has four components to access these:� The search component provides rapid access to

both the audio and transcripts of the set of po-
tentially relevant documents. SMART retrieves
these via a search panel at the top of the browser.
Results are depicted in the `results' panel im-
mediately below, which presents a relevance-
ranked list of 10 audio documents, with addi-
tional information, including program name and
story number, date, relevance score, length (in
seconds), and total hits (number of instances of
query words)� The visual overview component provides high-
level information about individual audio docu-
ments, so users can rapidly scan to locate po-
tentially relevant regions. It shows the query
terms that appear in each paratone of the story.
Each query word is color coded, and each para-
tone is represented by a column in a histogram.
The width of the column represents the rela-
tive length of that paratone. The height of each
column in the histogram represents the overall
query word density (number of instances of the
query terms normalized for the paratone length)
within the paratone. Users can directly access
the speech for any paratone by clicking on the
corresponding column of the histogram.� The automatic transcript supports information
extraction, providing detailed, if sometimes in-
accurate, information about the contents of a
story. Query terms in the transcript are high-
lighted and color-coded, using the same coding
scheme used in the overview panel. Users can
play a given paratone by clicking on the corre-
sponding paragraph in the transcript.� A simple play bar represents a single story,
which users can access randomly within the bar,
plus start and stop buttons to control play for this
component and others.

4. EMPIRICAL EVALUATION

To test our hypotheses about the usefulness of our
WYSIAWYH paradigm in supporting local browsing,
we compared the SCAN browser, with a control in-
terface that gave users only the search panel and the
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Figure 3: Solution Quality for Each Task

player component. Subjects performed three differ-
ent types of tasks: relevance judgments for five sto-
ries retrieved for a query; finding simple facts; and
summarization of a given story in 4-6 sentences. The
experimental design was randomized within subjects.
Twelve subjects were given 4 of each of the 3 task
types. For half they used the SCAN browser, and the
control browser for the other half. For each question
we measured outcome information: time to solution
and quality of solution (as assessed by two indepen-
dent judges); collected process information (number,
type, target story, and duration of browsing and play
operations). We also collected subjective data, includ-
ing subject ratings of task difficulty and the quality of
the automatic transcript for the SCAN condition. Sub-
jects were encouraged to “think aloud” as they carried
out the tasks and answered a post-test survey asking
about relative task difficulty, how well the SCAN UI
supported each task, overall browser quality , how the
browser might be improved, quality of the transcript,
and what led them to evaluate the transcript positively
or negatively.

We found that users generally performed better
with the SCAN WYSIAWYH browser than with the
control, in terms of time to solution, solution quality,
perceived task difficulty, and users' rating of browser
usefulness. With the SCAN browser, people played



much less speech, although they executed more play
operations. We infer that the SCAN browser allowed
users to play more selectively. However, while the
SCAN UI improved performance in the fact-finding
and relevance ranking tasks significantly, it did not im-
prove the summarization task (as shown in Figures 2
and 3).

5. CONCLUSION AND FURTHER RESEARCH

SCAN currently provides a means of finding and
browsing information in a large speech database. It
has been demonstrated to retrieve documents with
high effectiveness. It also improves audio brows-
ing in two important tasks, fact-finding and docu-
ment relevance-ranking, when compared with simple
speech-only browsing. Next steps to improve both ar-
eas are to identify relevant regions within retrieved au-
dio documents.

Our SCAN GUI does not appear to improve sum-
marization. We believe that automatic speech summa-
rization, document topic segmentation and document
outlining may be important techniques to aid in audio
document summarization by providing a first approxi-
mation which users can then flesh out by selective lis-
tening. We also intend to improve the paratone detec-
tor, by incorporating relative pausal duration between
intonational phrases into the presentation of our ASR
transcription, so that browsing can take advantage of
inferred topic segmentation. Additional steps will in-
volve taking our Broadcast News browsing beyond the
NIST corpus to handle current material as it is broad-
cast. We also plan to apply techniques developed for
news stories to a voicemail domain; both projects are
currently underway.
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