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ABSTRACT

We present an overview of a spoken document retrieval system
developed at AT&T Labs-Research for the HUB4 Broadcast
News corpus.  This overview includes a description of the
intonational phrase boundary detection, classification, speech
recognition, information retrieval and user interface
components of the system, along with updated system
assessments based on the 49-query task defined for the TREC-6
SDR track.  Results from a comparative ranking study, based
on queries taken from AP Newswire headlines from the same
time period that the Broadcast News corpus was recorded, are
presented.  For the AP task, retrieval accuracy is assessed by
comparing the documents retrieved from ASR generated
transcriptions with those from human generated transcriptions.

1. INTRODUCTION

This paper presents an overview of a spoken document retrieval
and browsing system developed at AT&T Labs Research.  The
system was designed for the TREC-6 SDR track [23], which
involved a retrieval task consisting of 49 known-item queries
submitted over approximately 47 hours of speech from the
HUB4 Broadcast News corpus [5].  Automatic speech
recognition is used to generate textual transcripts of the HUB4
corpus.  Text-based information retrieval techniques are then
applied.  In addition to supporting research on information
retrieval strategies for machine generated speech transcripts,
the system is also a testbed for user-interface experiments on
intelligent presentation of speech documents to users.

Previous work on spoken document retrieval includes a Video
Mail Retrieval system [7,8], radio news broadcast retrieval
using subword units [16], a retrieval system for a digital video
library [25], a system for Swiss radio news [24], and the
systems developed for the TREC-6 SDR track [23], inter alia.

2. SYSTEM OVERVIEW

An overview of the system architecture is provided in Figure 1.
Speech documents, whose boundaries were prespecified for the

HUB4 retrieval task, are initi all y processed by an intonational
phrase boundary detector.  The phrase defined by the boundary
detector is then submitted for classification.  The classifier
provides a hypothesis about the channel conditions in the given
phrase.  Based on this hypothesis, one of several acoustic
models is selected for use in the recognizer. Having generated
the transcripts for the speech corpus, an information-retrieval
engine indexes the transcripts for retrieval. Boundary detection,
classification, recognition and indexing are all conducted off-
li ne. The user-interface currently supports real-time query-
submission and retrieval, making call s to the information-
retrieval engine which returns a ranked li st of hypothesized
relevant documents based on the machine generated transcripts.
Each of the system components is described in more detail
below.
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Figure 1: Overview of the spoken document system
architecture

2.1. Intonational Phrase Boundary Detection

The speech documents are initi all y passed through an
intonational phrase boundary detector [6].  The detector
generates a binary classification for every 10 msec of the
speech stream as either (i) occurring within an intonational
phrase or (ii ) occurring in the break between two intonational
phrases.  This decision is based on models generated by
classification and regression tree techniques [1], which were
trained on acoustic vectors consisting of the following
parameters:  fundamental frequency, RMS energy and
autocorrelation-peak.  The training corpus consisted of the
Boston Directions Corpus [15] which was prosodicall y
transcribed using ToBI conventions [18].



Contiguous frames classified as occurring in the break between
intonational phrases are used to define phrase boundaries, with
the constraint that an intonational phrase be at least 1 second in
duration and no greater than 20 seconds in duration.  Selection
is biased toward longer phrases, so that if, e.g., a phrase
boundary is detected at 5 seconds and another at 19 seconds,
the boundary at 5 seconds is ignored in favor of a single larger
phrase 19 seconds in length. This boundary detection scheme
segmented the speech corpus into 10,480 phrases averaging
14.78 seconds in duration.

The boundary detection serves two purposes.  First, the
intonational phrases serve as domains over which we can apply
one of several acoustic models for recognition.  This is
discussed in more detail i n section 2.2.  Second, the frame
classifications are also used to identify suitable browsing-units
for the user interface of the spoken document retrieval system.
This is based on the assumption that presentation of
prosodicall y well -formed segments of speech to the user would
be preferable to fixed-size segments which might begin and
terminate in the middle of an utterance.

2.2. Classifier

To select the best acoustic model to apply to a given
recognition unit, a classifier [13] is used which assigns log-
li kelihood scores associated with each of four categories,
reflecting a four-way partiti oning of the training corpus into
''high-fidelit y'', ''medium-fidelit y'', ''low-fidelit y'' and ''noise''
categories.  The high-fidelit y partiti on consists of wideband (0-
8kHz) speech recorded in the studio with no background noise.
The medium partiti on also consists of wideband (0-8kHz)
speech, but recorded in other recording environments, including
field conditions, with no background noise. The low-fidelit y
partiti on consists of narrowband speech (0-4kHz) recorded
from telephone interviews, again with no background noise.
All speech recorded in the presence of background noise is
consigned to the noise partiti on.  Partiti oning was based on
labels provided with the HUB4 training corpus.  The purpose of
this partiti oning was to minimize observed variabilit y in
channel conditions when training different acoustic models.

Table 1:  Confusion-matrix for the classification models;
correct classifications are represented on the diagonal.  Each
row provides counts of positi ve classifications by model MC for
each data partiti on DC.  Accuracy for each model MC is
presented as percent correct.

Classification is based on full covariance Gaussian mixture
models [22], initi ali zed using vector quantization [10], and
trained using the Expectation-Maximization algorithm [3].  The

training input consists of 31-dimensional vectors of filt er-bank
coeff icients in dB units, derived from Hamming windowed
frames of 20 msec with a frame advance rate of 10 msec.  The
filter-bank coeff icients are computed by taking the base 10
logarithm from short term power spectra in the 0-8kHz band
from a mel-scaled bank of filters.

Log-li kelihood scores are computed for each of the four
classification models.  Recognition then proceeds with the
acoustic model associated with the classification that provides
the highest log-li kelihood score.  When tested on the three hour
HUB4 development test partiti on, overall accuracy for the
classifier was assessed at 69.91%, normali zing for the number
of observations in each category.  Within category accuracy
scores, along with a confusion matrix profili ng errors, are
reported in Table 1.

2.3. Recognizer

The recognizer incorporates a standard time-synchronous beam
search algorithm with continuous density, three-state, left-to-
right, context-dependent hidden Markov phone models.  The
models connecting phone HMMs to word sequences are
implemented in the general framework of weighted finite-state
transducers [14,17].  The probabiliti es defining the
transduction from context-dependent phone sequences to word
sequences are estimated on word level grapheme-to-phone
mappings generated by a set of heuristics.  These mappings are
typicall y one-to-one, although multiple pronunciations are
defined for less than 5% of the 29K words considered in the
training phase.

Recognition hypotheses are output in the form of word lattices
which are derived from model lattices by transducer
composition [14].  Given a phone model p for transition a from
state s to state s' matching the input from time t to time t', the
corresponding model lattice arc goes from node (s,t) to node
(s',t').  In the implementation, for any such t', only the best t is
recorded for reasons of run-time eff iciency and lattice size.  The
resulting lattice reduction does not seem to have negative
consequences for recognition accuracy.

Acoustic observations serving as input to the HMMs consist of
39-dimensional vectors taken from 20 msec analysis frames.
The frame advance rate is 10 msec.  Each acoustic vector
contains the first 13 normali zed mel-frequency cepstral
coefficients, along with their first and second time derivatives.

Two sets of acoustic models have been trained.  The first set
consists of four acoustic models – A1HIGH, A1MED, A1LOW and
A1NOISE – based on the four-way partiti oning of the training
corpus described in section 2.2.  Each of these models was
bootstrapped from a single model trained on the channel 1 WSJ
training corpus.  The second set of models consists of two
acoustic models – A2WB and A2NB – trained on wideband speech
(the union of the “high-fidelit y” , “medium-fidelit y” and “noise”
partiti ons), and narrowband speech (the “low-fidelit y”
partiti on), respectively.  The A2WB model was bootstrapped

DHIGH DMED DLOW DNOISE CORRECT

MHIGH 123 38 0 15 69.88%
MMED 3 4 0  9 25.00%
MLOW 10 12 85 0 79.44%
MNOISE 44 31 1 167 68.72%



from A1HIGH. In addition, the training corpus for A2WB was
expanded to include the “spontaneous speech” partiti on of the
channel 2 WSJ training corpus.  This additional training data
was weighted by a factor of 0.1 in calculating means and
variances; the HUB4 training data was weighted by a factor of
0.9.  The WSJ data was not included in defining the context-
dependency models.  The A2NB model was bootstrapped from a
narrowband model trained on the SWITCHBOARD corpus [4].

Training iterations in both sets consisted of eigenvector
rotations to decorrelate the training data [11], k-means
clustering, normali zation of means and variances based on
maximum-li kelihood, and Viterbi alignment to re-segment the
data.  The output probabilit y distributions in the HMMs consist
of a weighted mixture of Gaussians with diagonal covariance.
Each mixture in the A1 set of models contains at most 8
components.  In the A2 set of models, each mixture contains at
most 12 components.

2.4. Language Models

Language modeling was based on a 116 milli on word corpus
consisting of text designated for SDR language modeling and
the transcriptions from the training partiti on.  The 20K most
frequent words in the training corpus comprise our lexicon. The
least frequent of the 20K words appear 121 times in the
training corpus.  In addition, two pseudo words – pause and
unknown – were added to the lexicon.  pause is freely
insertable at any point in recognition, and unknown is used for
words outside the vocabulary.

Two Markov language models were trained.  A standard Katz
[9] backoff bigram model was constructed from the 6.1 milli on
bigrams observed in the training corpus.  When tested on the
retrieval test corpus, this model exhibits an out-of-vocabulary
rate of 2.2% and perplexity of 200.

A backoff trigram model was also constructed based on the 9.4
milli on trigrams observed in the training corpus.  This model
showed an out-of-vocabulary rate of 2.2% and a perplexity of
144 on the three hour development test corpus.  From this
model, a more compact trigram language model was
constructed following the procedures described in [20].  In
particular, trigrams and bigrams were discarded from the model
in cases where the difference between the model prediction and
the backed-off prediction is less than a threshold T:

f *  ( PO - PB ) < T

where f is the observed n-gram frequency, PO is the n-gram
prediction and PB is the backed-off (n-1)-gram prediction.  In
our case, a threshold of 20 was used.  This technique reduces
the number of trigrams in the model by 85% and the number of
bigrams in the model by 83%, with a concomitant increase in
perplexity of 18% to 169.  Compared to the bigram model, this
compacted trigram model has 16% lower perplexity and is 60%
smaller.

2.5. Information Retrieval

We use the SMART retrieval system which is a text processing
system based on the vector space model [19,2].  SMART
automaticall y generates weighted vectors for any given text
using the following indexing scheme:

• Tokenization:  The text is first tokenized into
individual words and other tokens.

• Stop word removal:  Common functions words (li ke
the, of, an, …), also called stop words, are removed
from this li st of tokens.  The SMART system uses a
predefined list of 571 stop words.

• Stemming:  Various morphological variants of a word
are normali zed to the same stem [12].  Usuall y simple
rules for suffix stripping are used in this process.

• Weighting:  The term (word) vector, thus created for a
text, is weighted using tf, idf, and length normali zation
considerations.

We use the Lnu term weighting scheme to assign weights to the
terms of a document [21]:

( 1 + ln ( tf ) ) / ( 1 + ln ( average tf ) )                                                                                                    

0.8 *  pivot + 0.2 *  ( # of unique terms )

where tf is the number of times a term occurs in the text, and
average tf is the average of the tfs of all the terms in a
document.  The average number of unique terms in a document
(computed across the entire collection) is used as the pivot.
The user queries are also indexed using the above steps, and
are weighted using ltn weights [21]:

( 1 + ln ( tf ) ) *  idf

where tf is once again the frequency of a word in the query and
idf is ln(N/df) (N is the total number of documents in the
collection, and df is the number of documents that contain the
word).

If Q is the query vector and Di is the vector representation for
document-i, a numerical (inner-product) similarity between the
query and the document is computed as

Sim ( Q,Di )   =           Σ            qj  *   dij

                                                   common terms tj

where tj is a term present in both the query and the document,
qj is the weight of term tj in the query, and di j is its weight in
document-i.  The documents in the information base are ranked
by their decreasing similarity to the query and are presented to
the user in this order.

2.6. User Interface

The user interface design is based on extensive user testing of a
simple browser on a voicemail database and consists of three
main components: an Programs Overview window, a Speech



Feedback window and a Player window.  These are shown in
Figure 1 for the query “whitewater clinton scandal” .  Queries
are submitted textually at a shell prompt.

Figure 2:  The graphical user interface for spoken document
retrieval and browsing.

The Programs Overview window presents the speech search
results as a relevance ranked li st of stories, named by the news
program in which they occur.  The top 10 most relevant stories
are displayed.  For each story, the program titl e (e.g., “NPR All
Things Considered” ), the date of the program and all i nstances
of keywords in the story that matched the query are displayed.
Cli cking on one of the program-story buttons loads the
corresponding speech into the Speech Feedback window, along
with a time-aligned cursor which shows the location of the
story that contains the query terms.  The Player window
provides controls for navigation and play within the program
displayed in the Speech Feedback window and includes the
following:  a play button which plays from the point selected in
the Speech Feedback window; a stop-play button; a move-to-
beginning button; skip-forward buttons which skip forward an
intonational phrase or paratone; skip-back buttons which skip
backwards an intonational phrase or paratone.  A paratone is a
unit larger than the intonational phrase whose pause boundaries
are typicall y longer in duration than those that delimit
intonational phrases.  Like the intonational phrases, the
paratones are automaticall y detected labeled using the
boundary-detection model described in section 2.1.

3.  SYSTEM EVALUATION

We evaluate the retrieval effectiveness of our system using two
different tasks:  the TREC-6 SDR task and an AP Newswire
headlines task.  Both tasks, described in sections 3.1 and 3.2,

involve two different sets of transcriptions.  The first set
(Trans1) was generated by a recognizer using the A1 model set
and the bigram language model.  Subsequently, another set of
transcriptions (Trans2) was generated by using the A2WB model,
the A1LOW model and the compact trigram language model.1

The word error rates associated with the two recognizers on the
three hour development test partiti on and the 47 hour test
partition are presented in Table 2.

Table 2:  Word error rates associated with the two different
recognizers on both the three hour development-test partiti on
and the 47 hour test partition.

3.1. TREC-6 SDR Task

The first benchmark we use is the TREC-6 SDR task.  For this
task, each broadcast-show has been manuall y divided into
several documents.  There are 49 user queries with each query
having a unique “answer document” in the collection of 1452
documents (as indexed by SMART).  Two queries, numbered
SDR43 and SDR48, have two answer documents in the
collection.  The aim of the retrieval system is to rank the
answer document for a query as high up in rank as possible (in
response to the query).  This task has also been referred to as
“known item searching” .  For the two queries with more than
one answer document, the rank of the answer document with a
better rank (lower absolute rank) is used in the evaluations.

It is generall y accepted that this is a relatively easy task
compared to other benchmark retrieval tasks.  For most of the
queries, a typical IR system running on the human transcription
of the speech consistently retrieves the answer document within
the top few ranks.  This pattern holds true even when retrieval
is done using machine generated transcription, albeit less
accurately.  This ease of retrieval makes it diff icult to conduct
rigorous comparisons of multiple retrieval approaches.  Given
the ease of retrieval from this collection, using any single
evaluation measure does not exempli fy meaningful differences
between two retrievals.  For this reason, we use five different
evaluation measures in this study to compare the retrieval
effectiveness of retrieval from various transcriptions.

Evaluation Measures.  The evaluation measure that we use
are:

• E1:  Number of queries for which the answer document
is ranked 1.  This indicates “perfect” retrieval.  High
values for this evaluation measure are desired as they

                                                       
1 The training of the A2NB model was incomplete at the time the second set
of transcripts was generated.

Word Error Rate
Recognizer 1 Recognizer 2

(Trans1) (Trans2)

Devtest (3 hours) 50.50% 36.64%
Test (47 hours) 42.70% 30.09%



indicate that a retrieval system is doing perfect retrieval
for many queries.

• E2:  Number of queries for which the answer document
is ranked within the top 5.  Perfect retrieval might be
too strict an evaluation measure.  From a user’s
perspective, if an answer document is retrieved at rank
2, then the system is still doing a good job.  This
evaluation measure credits a system if the answer is
found within the top five speech documents retrieved.

• E3:  Mean answer rank.  This measure uses the answer
ranks for all the queries.  A system that has a low mean
answer rank is better.

• E4:  Mean answer rank, after removing outliers.  Since
there are only 49 queries, if one of the answers is
retrieved at a poor rank, the mean answer rank measure
for the entire system suffers noticeably.  For example. If
one of the answers is ranked 400 for a system, the mean
answer rank of the system fall s by almost 8.  For this
reason, we allow each system to ignore one to two of its
worst queries for which the answer is retrieved at a very
poor rank when computing the mean answer rank.

• E5:  Mean reciprocal rank.  This is the known item
search variant of the non-interpolated average precision
score.  Its value is computed as:

                              
49

Σ   ( 1 / answer rank for queryi )

                                               

i = 1
                                                                                                    

49

Higher values of this measure are better.  We must
point out that this measure is heavil y governed an
answers rank.  For example, if the answer is at rank 1,
this measure assigns a credit of 1.0 to the system;
whereas if the answer is ranked 2, the credit assigned is
just half.  It is unclear if, from a user’s perspective,
ranking an answer at rank 1 is 100% better than ranking
the answer at rank 2.  On the other hand, this measure
makes very littl e distinction between an answer ranked
at low ranks (1/100 is not much different from 1/300 in
absolute terms).

If one retrieval run consistently outperforms another on most of
the above measures, then, despite the shortcomings of this task,
we have strong reason to believe that the better retrieval run is
indeed superior.

Results. We performed retrieval using the 49 queries on the
first transcription set Trans1, the second transcription set
Trans2 and the human transcriptions Human.  The results are
shown in Table 3. The -1 in the E4 row indicates that each run
was allowed to skip its one worst query. Similarly the -2 in the
very next row indicates that the two worst queries were skipped
for each run. The numbers in the parentheses represent
improvement in retrieval (in the case of positi ve numbers) as
compared to the baseline performance associated with Trans1.

Table 3 shows that retrieval on Trans2 outperforms retrieval on

Trans1 for each and every evaluation measure.  Using Trans2,
e.g., 32 out of the 49 queries get their answer document
retrieved at rank 1, as opposed to just 29 for Trans1. Similar
improvements are obtained for other measures.  These results
are reassuring as they indicate that when a speech recognizer
improves, a speech retrieval system should improve as well . As
expected, retrieval from recognizer generated transcripts is still
poorer than retrieval from human generated transcripts.

Table 3:  Retrieval results for TREC-6 SDR task.

3.2. AP Newswire Queries

To exercise the system and expand our evaluation protocol, we
devised another task to compare the retrieval from the three
transcription sets.  We selected 94 AP Newswire headlines,
publi shed between May 10, 1996 and June 20, 1996, the same
period from which the broadcast news shows were recorded.
We use these headlines, which are typicall y short, as potential
user queries for retrieval. However, since we do not have
relevance assessments for these headlines, we cannot use the
standard IR evaluation measures (such as average precision) to
evaluate our retrieval.  Since most speech retrieval work
aspires to achieve results comparable to the results of doing
retrieval from the human transcription of speech, in this task,
we use the ranking for the human transcriptions as a ''gold
standard'' and evaluate how close retrieval from speech comes
to this gold standard.

Evaluation Measures and Results.  As a first test, we
compare the average number of common documents retrieved
per query (within the top K ranks) from the human
transcriptions and the machine transcriptions.  A higher
average number of common documents would signify a higher
correlation between retrievals from the Human set of
transcriptions and those from the Trans1 and Trans2 sets.
This, in turn, would suggest that the corresponding speech
retrieval run is more effective.

We test this measure for the K values 1, 5, 10, 20, 30, 50, and
100. The results are shown in Figure 2. We observe that
retrieval from Trans2 is more closely correlated to the human
transcription than retrieval from Trans1 for all K ranks on this

Trans1 Trans2 Human

E1 29 32 35
-- (+3) (+6)

E2 37 39 45
-- (+2) (+8)

E3 25.80 10.39 7.39
-- (+15.41) (+18.41)

E4 9.83 6.10 2.63
(-1) -- (+3.73) (+7.20)

E4 6.06 5.21 2.00
(-2) -- (+0.81) (+4.06)

E5 0.6703 0.7149 0.8020
-- (+6.65%) (+19.65%)



evaluation measure.  On average, Trans2 retrieves about 75%
more in common to Human whereas Trans1 only retrieves
about 70%.
We use the following additional test to compare rankings from
the human and the machine transcriptions. We assume that the
top K documents as retrieved from the human transcriptions are
relevant for the corresponding query. Given this assumption,
we can compute the average precision for retrieval from the
machine transcriptions. Note that by this assumption, retrieval
from human transcriptions always has an average precision of
100%.
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Figure 3:  Percent of common documents in top K ranks.

Once again, we test this measure for the K values 1, 5, 10, 20,
30, 50, and 100. The results, shown in Figure 3, again confirm
that retrieval from Trans2 is more effective for all K ranks, as
measured by average precision.

50

55

60

65

70

75

80

85

A
ve

ra
ge

 P
re

ci
si

on

1 5 10 20 30 50 100

K Top Ranks Assumed Relevant

Trans2

Trans1

Figure 4:  Average precision for retrieval from machine
generated transcriptions if the top K ranks of human generated
transcriptions are assumed relevant.

4.  CONCLUSIONS

We have provided an overview of a spoken document retrieval
system designed for the HUB4 corpus and presented
experimental results which provide some metric of retrieval
eff iciency.  Two general conclusions can be drawn from these
results.  First, spoken document retrieval is a tractable
problem. As shown in Figures 3 and 4, retrieval from automatic
transcriptions is about 70-80% as effective as retrieval from
human transcriptions.  This number is in agreement with other
studies that have compared the retrieval effectiveness on both
automaticall y generated transcriptions and human generated
transcriptions [8,25].

The second conclusion we draw is simply that better
recognition contributes to better retrieval.  While this seems
intuiti vely transparent, we are pleased that our empirical
findings support this hypothesis.  The relatively small size of
the HUB4 corpus for information retrieval purposes initi all y
forced us to interpret our early results with some skepticism.
However, with the introduction of the various other evaluation
measures outli ned in this paper, and the consistency with which
the trends were evident along all these measures, we find that
speech retrieval systems do stand to gain from better
recognition.

We are encouraged by these results and continue to explore
various approaches to increase retrieval eff iciency and to
resolve the ‘out-of-vocabulary’ problem, which was not
addressed in this paper.  Preliminary results from work with
word lattices which provide multiple recognition hypotheses
suggest that the use of lattices increases word recall , albeit with
noticeable cost in word precision, and that this increase results
in better retrieval.  We have also conducted experiments
exploring the use of subword units and hope to expand this li ne
of research in the coming months.  The system is also being
utili zed to explore different user interfaces to maximize the
utilit y of spoken document retrieval for browsing broadcast
news recordings as well as other application domains.
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