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ABSTRACT

We present an overview of a spoken document retrieval system
developed at AT&T Labs-Reseach for the HUB4 Broadcast
News corpus. This overview includes a description of the
intonational phrase boundary detection, clasdfication, speech
recognition, information retrieval and wser interface
components of the system, aong with updied system
assesaments based on the 49-query task defined for the TREC-6
SDR track. Results from a comparative ranking study, based
on queries taken from AP Newswire heallines from the same
time period that the Broadcast News corpus was recorded, are
presented. For the AP task, retrieval acauracy is assessd by
comparing the documents retrieved from ASR generated

transcriptions with those from human generated transcriptions.

1. INTRODUCTION

This paper presents an overview of a spoken document retrieval
and lrowsing system developed at AT&T Labs Reseach. The
system was designed for the TREC-6 SDR track [23], which
involved a retrieval task consisting o 49 krown-item queries
submitted over approximately 47 hours of speech from the
HUB4 Broadcast News corpus [5].  Automatic speech
recognition is used to generate textual transcripts of the HUB4
corpus. Text-based information retrieval techniques are then
applied. In addition to supporting reseach on information
retrieval strategies for machine generated speech transcripts,
the system is also a testbed for user-interface experiments on
intelligent presentation of speech documents to users.

Previous work on spoken document retrieval includes a Video
Mail Retrieval system [7,8], radio news broadcast retrieval
using subword urits [16], a retrieval system for a digital video
library [25], a system for Swiss radio news [24], and the
systems developed for the TREC-6 SDR track [2®r alia.

2. SYSTEM OVERVIEW

An overview of the system architecture is provided in Figure 1.
Speech documents, whose bouncaries were prespecified for the

HUBA4 retrieval task, are initially processed by an intonational
phrase boundary detector. The phrase defined by the boundary
detector is then submitted for clasdfication. The clasdfier
provides a hypothesis about the channel conditions in the given
phrase. Based on this hypothesis, one of several acoustic
models is slected for use in the recognizer. Having generated
the transcripts for the speech corpus, an information-retrieval
engine indexes the transcripts for retrieval. Boundary detection,
classfication, recognition and indexing are dl conducted off-
line. The user-interface currently supports red-time query-
submisgon and retrieval, making cals to the information-
retrieval engine which returns a ranked list of hypothesized
relevant documents based on the machine generated transcripts.
Each of the system components is described in more detail
below.
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Figure 1: Overview of the spoken document system
architecture

2.1. Intonational Phrase Boundary Detection

The speech documents are initialy passd through an
intonational phrase boundary detector [6]. The detector
generates a binary classfication for every 10 msec of the
speech strean as either (i) occurring within an intonational
phrase or (ii) ocaurring in the bre& between two intonational
phrases. This decision is based on models generated by
classfication and regresson tree techniques [1], which were
trained on acoustic vectors consisting o the following
parameters.  fundamental frequency, RMS energy and
autocorrelation-peek. The training corpus consisted of the
Boston Directions Corpus [15] which was prosodicaly
transcribed using ToBI conventions [18].



Contiguous frames classfied as ocaurring in the breek between
intonational phrases are used to define phrase boundaries, with
the constraint that an intonational phrase be & least 1 secondin
duration and ro greder than 20seconds in duration. Selection
is biased toward longer phrases, so that if, e.g., a phrase
boundary is detected at 5 seconds and another at 19 seconds,
the boundary at 5 seconds is ignored in favor of a single larger
phrase 19 seconds in length. This boundary detection scheme
segmented the speech corpus into 10,480 phases averaging
14.78 seconds in duration.

The boundary detection serves two purposes. First, the
intonational phrases srve & domains over which we can apply
one of several acoustic models for recognition. This is
discussed in more detail in section 22. Second, the frame
clasdfications are dso used to identify suitable browsing-units
for the user interface of the spoken document retrieval system.
This is based on the aaumption that presentation of
prosodically well-formed segments of speech to the user would
be preferable to fixed-size segments which might begin and
terminate in the middle of an utterance.

2.2. Classifier

To select the best acoustic model to apply to a given
recognition urit, a clasdfier [13] is used which asdgns log-
likelihood scores assciated with each of four categories,
reflecting a four-way partitioning o the training corpus into
"high-fidelity", "medium-fidelity", "low-fidelity" and "noise"
categaries. The high-fidelity partition consists of wideband (0-
8kH2z) speech recorded in the studio with no background roise.
The medium partition aso consists of wideband (0-8kHz)
speech, but recorded in other recording environments, including
field conditions, with no background roise. The low-fidelity
partition consists of narrowband speech (0-4kHz) recorded
from telephone interviews, again with no background roise.
All speech recorded in the presence of background roise is
consigned to the noise partition. Partitioning was based on
|abels provided with the HUBA4 training corpus. The purpose of
this partitioning was to minimize observed variability in

channel conditions when training different acoustic models.

Duici Dmep Diow Dwoise CORRECT
M HicH 123 38 0 15 69.88%
M wveb 3 4 0 9 25.00%
M Low 10 12 85 0 79.44%
M noise 44 31 1 167 68.72%

Table 1: Confusion-matrix for the classfication models;
correct clasdfications are represented on the diagonal. Each
row provides counts of positive classfications by model M for
each data partition Dc.  Acauracy for each model Mc is
presented as percent correct.

Clasdfication is based on full covariance Gausgan mixture
models [22], initiadlized using vector quantization [10], and
trained using the Expectation-Maximization algarithm [3]. The

training input consists of 31-dimensional vectors of filter-bank
coefficients in dB units, derived from Hamming windowed
frames of 20 msec with a frame alvance rate of 10 msec. The
filter-bank coefficients are computed by taking the base 10
logarithm from short term power spectra in the 0-8kHz band
from a mel-scaled bank of filters.

Loglikelihood scores are computed for each of the four
clasdfication models. Recognition then proceeds with the
acoustic model associated with the classfication that provides
the highest loglikelihood score. When tested on the three hour
HUB4 development test partition, overall acauracy for the
classfier was assessd at 69.91%, normalizing for the number
of observations in each category. Within category accuracy
scores, along with a confusion matrix profiling errors, are
reported in Table 1.

2.3. Recognizer

The recognizer incorporates a standard time-synchronous beam
seach agorithm with continuous density, threestate, |eft-to-
right, context-dependent hidden Markov phone models. The
models connecting phone HMMs to word sequences are
implemented in the general framework of weighted finite-state
transducers  [14,17]. The probabilities defining the
transduction from context-dependent phone sequences to word
sequences are estimated on word level grapheme-to-phone
mappings generated by a set of heuristics. These mappings are
typicaly oneto-one, athough multiple pronurciations are
defined for lessthan 5% of the 29K words considered in the
training phase.

Recognition hypotheses are output in the form of word lattices
which are derived from model lattices by transducer
composition [14]. Given a phone model p for transition a from
state s to state s matching the input from time t to time t', the
corresponding model lattice ac goes from node (s;t) to node
(s,t"). Inthe implementation, for any such t', only the best t is
recorded for reasons of run-time dficiency and lattice size. The
resulting lattice reduction does not sean to have negative
consequences for recognition accuracy.

Acoustic observations rving as inpu to the HMMs consist of
39-dimensional vectors taken from 20 msec analysis frames.
The frame avance rate is 10 msec. Each acoustic vector
contains the first 13 rormalized mel-frequency cepstral

coefficients, along with their first and second time derivatives.

Two sets of acoustic models have been trained. The first set
consists of four acoustic models — Alycn, Aluen, Alow and
Alyas — besed on the four-way partitioning o the training
corpus described in section 22. Each of these models was
boatstrapped from a single model trained on the channel 1 WSJ
training corpus. The second set of models consists of two
acoustic models — A2,z and A2,; — trained on wideband speech
(the union of the “high-fidelity”, “medium-fidelity” and “noise”
partitions), and nrarrowband speech (the “low-fidelity”
partition), respectively. The A2,z model was boatstrapped



from Al,en In addtion, the training corpus for A2, was
expanded to include the “spontaneous eech” partition of the
channel 2 WSJ training corpus. This additional training data
was weighted by a factor of 0.1 in calculating means and
variances; the HUB4 training data was weighted by a factor of
0.9. The WSJ data was not included in defining the context-
dependency models. The A2,z model was bodstrapped from a

narrowband model trained on the SWITCHBOARD corpus [4].

Training iterations in both sets consisted of eigenvector
rotations to decorrelate the training data [11], k-means
clustering, normalization of means and variances based on
maximum+likelihood, and Viterbi alignment to re-segment the
data. The output probability distributions in the HMMs consist
of a weighted mixture of Gaussans with dagonal covariance.
Each mixture in the Al set of models contains at most 8
components. In the A2 set of models, each mixture contains at
most 12 components.

2.4. Language M odels

Language modeling was based on a 116 milli on word corpus
consisting of text designated for SDR language modeling and
the transcriptions from the training partition. The 20K most
frequent words in the training corpus comprise our lexicon. The
least frequent of the 20K words appea 121 times in the
training corpus. In addition, two pseudo words — pause and
unknomn — were alded to the lexicon. pauwse is fredy
insertable & any point in recognition, and unknown is used for
words outside the vocabulary.

Two Markov language models were trained. A standard Katz
[9] backoff bigram model was constructed from the 6.1 milli on
bigrams observed in the training corpus. When tested on the
retrieval test corpus, this model exhibits an out-of-vocabulary
rate of 2.2% and perplexity of 200.

A backoff trigram model was also constructed based on the 9.4
milli on trigrams observed in the training corpus. This model
showed an out-of-vocabulary rate of 2.2% and a perplexity of
144 on the three hour development test corpus. From this
model, a more compact trigram language model was
constructed following the procedures described in [20]. In
particular, trigrams and kigrams were discarded from the model
in cases where the difference between the model prediction and
the backed-off prediction is less than a thresfiold

f*(Po'PB)<T

where f is the observed n-gram frequency, P, is the n-gram
prediction and P is the backed-off (n-1)-gram prediction. In
our case, a threshold of 20 was used. This technique reduces
the number of trigrams in the model by 85% and the number of
bigrams in the model by 83%, with a concomitant increase in
perplexity of 18% to 169 Compared to the bigram model, this
compacted trigram model has 16% lower perplexity and is 60%
smaller.

2.5. Information Retrieval

We use the SMART retrieval system which is a text processng
system based on the vector space model [192]. SMART
automatically generates weighted vectors for any given text
using the following indexing scheme:

e Tokenization: The text is first tokenized into
individual words and other tokens.

e Stop word removal: Common functions words (like
the, of, an, ...), aso called stop words, are removed
from this list of tokens. The SMART system uses a
predefined list of 571 stop words.

e Stemming: Various morphologcal variants of a word
are normali zed to the same stem [12]. Usually simple
rules for suffix stripping are used in this process.

e Weighting: The term (word) vector, thus creaed for a
text, isweighted using tf, idf, and length normali zation
considerations.

We use the Lnu term weighting scheme to assgn weights to the
terms of a document [21]:

(1+In(tf))/(1+In(averageth)

0.8+ pivot+ 0.2« (# of unique term}

where tf is the number of times a term ocaurs in the text, and
average tf is the average of the tfs of al the terms in a
document. The average number of unique terms in a document
(computed across the antire collection) is used as the pivot.
The user queries are dso indexed using the &ove steps, and
are weighted usingn weights [21]:

(1+In(tf))-idf

where tf is once again the frequency of a word in the query and
idf is In(N/df) (N is the total number of documents in the
coll ection, and df is the number of documents that contain the
word).

If Q is the query vector and D, is the vector representation for
document-i, a numerical (inner-product) simil arity between the
query and the document is computed as

Sim(QD) = 2 q + d

common teyms t

where tj is a term present in both the query and the document,
q; is the weight of term t; in the query, and d; is its weight in
document-i. The documents in the information base ae ranked
by their decreasing simil arity to the query and are presented to
the user in this order.

2.6. User Interface

The user interface design is based on extensive user testing of a
simple browser on a voicemail database and consists of three
main components: an Programs Overview window, a Speech



Feedback window and a Player window. These ae shown in
Figure 1 for the query “whitewater clinton scandal”. Queries
are submitted textually at a shell prompt.

© _MPR Al Things Considered [5/18/3E] whitewater clinton ¢ intons clintor's scandal )

NPR &1l Things Considered [5/21/9E] whitewater clinton cinton’s )

CNN Primetime News [5/29/98]1  whiteweter clinton clinton’s )

NPR Al Things Considered [5/18/38] whitewater clinton cinton’s |

{ NPR Al Things Considarad [E/17 /9E] < inten whitewater )

CHM Headline News [6/5/9E] whitewater clinton’s ¢ inton )

ABC Nightline [E./14/98] clinton whitewater dintoﬂ’s)

CHN Early Primetime News [5/16/96]1  whitewater clintons clinton )

ABC NiyhLline [6.,14/96] whilgwaler clinton dlinbens )

NPR All Things Considered [5/17 /9E] < inton whitewater < inton’s |

g=== <= (relplay stop == == Coto begin |

Time(f): 0.00000sec D:20.0000  L:333.86000  R:413. SEO00 (F:f3

Figure 2: The graphical user interface for spoken document
retrieval and browsing.

The Programs Overview window presents the speech seach
results as a relevance ranked list of stories, named by the news
program in which they occur. The top 10 most relevant stories
aredisplayed. For eech story, the program title (e.g., “NPR All
Things Considered”), the date of the program and all i nstances
of keywords in the story that matched the query are displayed.
Clicking on one of the progam-story buttons loads the
corresponding speech into the Speech Feedback window, aong
with a time-aligned cursor which shows the location of the
story that contains the query terms. The Player window
provides controls for navigation and gday within the program
displayed in the Speech Feedback window and includes the
following: a play button which plays from the point selected in
the Speech Feedback window; a stop-play button; a move-to-
beginning button; skip-forward butons which skip forward an
intonational phrase or paratone; skip-back buttons which skip
backwards an intonational phrase or paratone. A paratoneis a
unit larger than the intonational phrase whose pause boundaries
are typically longer in duation than those that delimit
intonational phrases. Like the intonational phrases, the
paratones are aitomatically detected labeled uwsing the
boundary-detection model described in section 2.1.

3. SYSTEM EVALUATION

We evaluate the retrieval eff ectivenessof our system using two
different tasks. the TREC-6 SDR task and an AP Newswire
healines task. Both tasks, described in sections 3.1 and 32,

involve two different sets of transcriptions. The first set
(Transl) was generated by a recognizer using the A1 model set
and the bigram language model. Subsequently, another set of
transcriptions (Trans2) was generated by using the A2,z model,
the Al v model and the compact trigram language model.
The word error rates associated with the two recognizers on the
three hour development test partition and the 47 hour test
partition are presented in Table 2.

Word Error Rate
Recognizer 1 Recognizer 2
(Transl) (Trans2)
Devtest (3 hours) 50.50% 36.64%
Test (47 hours) 42.70% 30.09%

Table 2. Word error rates asociated with the two different
recognizers on both the three hour development-test partition
and the 47 hour test partition.

3.1. TREC-6 SDR Task

The first benchmark we use is the TREC-6 SDR task. For this
task, eech broadcast-show has been manually divided into
several documents. There ae 49 wser queries with each query
having a unique “answer document” in the collection of 1452
documents (as indexed by SMART). Two queries, numbered
SDR43 and SDR48, have two answer documents in the
collection. The d@m of the retrieval system is to rank the
answer document for a query as high upin rank as possble (in
response to the query). This task has also been referred to as
“known item seaching”. For the two queries with more than
one answer document, the rank of the answer document with a
better rank (lower absolute rank) is used in the evaluations.

It is generally acoepted that this is a relatively easy task
compared to aher benchmark retrieval tasks. For most of the
queries, atypical IR system runnng an the human transcription
of the speech consistently retrieves the answer document within
the top few ranks. This pattern holds true even when retrieval
is done using machine generated transcription, abeit less
acaurately. This ease of retrieval makes it difficult to conduct
rigorous comparisons of multiple retrieval approaches. Given
the eae of retrieval from this collection, using any single
evaluation measure does not exemplify meaningful differences
between two retrievals. For this reason, we use five different
evaluation measures in this fudy to compare the retrieva
effectiveness of retrieval from various transcriptions.

Evaluation Measures. The evaluation measure that we use
are:

e EL1: Number of queries for which the answer document
is ranked 1 This indicates “perfect” retrieval. High
values for this evaluation measure ae desired as they

! Thetrai ning d the A2z model wasincomplete at the time the second set
of transcripts was generated.



indicate that aretrieval system is doing perfect retrieval
for many queries.

e E2: Number of queries for which the answer document
is ranked within the top 5 Perfect retrieval might be
too strict an evaluation messure. From a user's
perspective, if an answer document is retrieved at rank
2, then the system is dill doing a goad job. This
evaluation measure credits a system if the answer is
found within the top five speech documents retrieved.

e E3: Mean arswer rank. This measure uses the answer
ranks for al the queries. A system that has a low mean
answer rank is better.

. E4: Mean arswer rark, after removing ouliers. Since
there ae only 49 queries, if one of the answers is
retrieved at a poor rank, the mean arswer rank measure
for the entire system suffers noticeebly. For example. If
one of the answers is ranked 400for a system, the mean
answer rank of the system falls by ailmost 8. For this
reason, we dlow each system to ignore one to two o its
worst gueries for which the answer is retrieved at a very
poor rank when computing timeean answer rank

e E5 Mean reciprocal rark. This is the known item
seach variant of the non-interpolated average precision
score. Its value is computed as:

49

2 (1 /answer rank for query)
i=1

49

Higher values of this measure ae better. We must
point out that this measure is heavily governed an
answers rank. For example, if the answer is at rank 1,
this measure adgns a credit of 1.0 to the system;
whereas if the answer is ranked 2, the credit assgned is
just half. It is unclea if, from a user's perspective,
ranking an answer at rank 1is 100% better than ranking
the answer at rank 2 On the other hand, this measure
makes very littl e distinction between an answer ranked
a low ranks (1/100is not much dfferent from 1/300in
absolute terms).

If one retrieval run consistently outperforms another on most of
the &ove measures, then, despite the shortcomings of this task,
we have strong reason to believe that the better retrieval runis
indeed superior.

Results. We performed retrieval using the 49 queries on the
first transcription set Transl, the second transcription set
Trans2 and the human transcriptions Human. The results are
shown in Table 3. The -1 in the E4 row indicates that each run
was all owed to skip its one worst query. Similarly the -2 in the
very next row indicates that the two worst queries were skipped
for each run. The numbers in the parentheses represent
improvement in retrieval (in the case of positive numbers) as
compared to the baseline performance associatedivétis1

Table 3 shows that retrieval on Trans2 outperforms retrieval on

Transl for each and every evaluation measure. Using Trans2,
eg., 32 out of the 49 queries get their answer document
retrieved at rank 1, as opposed to just 29 for Transl. Similar
improvements are obtained for other measures. These results
are reasauring as they indicate that when a speech recognizer
improves, a speech retrieval system should improve & well. As
expected, retrieval from recognizer generated transcripts is gill
poorer than retrieval from human generated transcripts.

Transl Trans2 Human

E1l 29 32 35

- (+3) (+6)
E2 37 39 45

- (+2) (+8)
E3 25.80 10.39 7.39

- (+15.41) (+18.41)
E4 9.83 6.10 2.63
(-1) - (+3.73) (+7.20)
E4 6.06 5.21 2.00
(-2) - (+0.81) (+4.06)
E5 0.6703 0.7149 0.8020

- (+6.65%) (+19.65%)

Table 3: Retrieval results for TREC-6 SDR task.

3.2. AP Newswire Queries

To exercise the system and expand our evaluation protocol, we
devised another task to compare the retrieval from the three
transcription sets. We selected 94 AP Newswire headlines,
pulished between May 10, 1996 and June 20, 1996 the same
period from which the broadcast news shows were recorded.
We use these headllines, which are typicaly short, as potential
user queries for retrieval. However, since we do not have
relevance assesanents for these headlines, we cannot use the
standard IR evaluation measures (such as average precision) to
evaluate our retrieval. Since most speech retrieval work
aspires to achieve results comparable to the results of doing
retrieval from the human transcription of speech, in this task,
we use the ranking for the human transcriptions as a "gdd
standard" and evaluate how close retrieval from speech comes
to this gold standard.

Evaluation Measures and Results. As a first test, we
compare the average number of common documents retrieved
per query (within the top K ranks) from the human
transcriptions and the machine transcriptions. A higher
average number of common documents would signify a higher
correlation between retrievals from the Human set of
transcriptions and those from the Transl and Trans2 sets.
This, in turn, would suggest that the corresponding speech
retrieval run is more effective.

We test this measure for the K values 1, 5, 10, 20, 30, 50, and
100 The results are shown in Figure 2. We observe that
retrieval from Trans2 is more closely correlated to the human
transcription than retrieval from Transl for al K ranks on this




evaluation measure. On average, Trans2 retrieves about 75%
more in common to Human whereas Transl only retrieves
about 70%.

We use the foll owing additional test to compare rankings from
the human and the machine transcriptions. We asume that the
top K documents as retrieved from the human transcriptions are
relevant for the corresponding query. Given this assumption,
we can compute the average precision for retrieval from the
machine transcriptions. Note that by this assumption, retrieval
from human transcriptions always has an average precision of
100%.
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Figure 3: Percent of common documents in topanks.

Once again, we test this measure for the K values 1, 5, 10, 20,
30, 50, and 100 The results, shown in Figure 3, again confirm
that retrieval from Trans2 is more dfective for all K ranks, as
measured by average precision.
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Figure 4: Average precision for retrieval from machine
generated transcriptions if the top K ranks of human generated
transcriptions are assumed relevant.

4. CONCLUSIONS

We have provided an overview of a spoken document retrieval
system designed for the HUB4 corpus and presented
experimental results which provide some metric of retrieval
efficiency. Two general conclusions can be drawn from these
results.  First, spoken document retrieval is a tractable
problem. As hown in Figures 3 and 4 retrieval from automatic
transcriptions is about 70-80% as effective & retrieval from
human transcriptions. This number is in agreement with other
studies that have compared the retrieval effectiveness on both
automatically generated transcriptions and human generated
transcriptions [8,25].

The second conclusion we draw is sSmply that better
recognition contributes to better retrieval. While this eems
intuitively transparent, we ae pleassed that our empirical
findings support this hypothesis. The relatively small size of
the HUB4 corpus for information retrieval purposes initially
forced us to interpret our ealy results with some skepticism.
However, with the introduction of the various other evaluation
measures outlined in this paper, and the consistency with which
the trends were evident along all these measures, we find that
speech retrieval systems do stand to gain from better
recognition.

We ae encouraged by these results and continue to explore
various approaches to increasse retrieval efficiency and to
resolve the ‘out-of-vocabulary’ problem, which was not
addressed in this paper. Preliminary results from work with
word lattices which provide multiple recognition hypotheses
suggest that the use of lattices increases word recall, albeit with
noticeeble cost in word precision, and that this increase results
in better retrieval. We have dso conducted experiments
exploring the use of subword urits and hope to expand this line
of reseach in the coming months. The system is also being
utili zed to explore different user interfaces to maximize the
utility of spoken document retrieval for browsing broadcast
news recordings as well as other application domains.
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